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SUFLMARY

The theory of analytic functions is used as a new

approach to the study of conventional multiplexing

schemes. The multiplexing process involves double and

triple modulation techniques. The most general form

of modulated waves exhibit simultaneous phase and enve-

lope fluctuation.

Phase and envelope relationships described in math-

ematlcai formulation have a strong dependence on the real

and complex zeroes of the actual wave. The properties

of analytic signals are studied, yielding a general theory

of zero-representation of the original signal that con-

tains its informational attributes. The mathematical

representation of zeroes of a periodic real signal has

physical significance when related to the spectra, phase,

and envelope fluctuations. The zero-pattern representa-

tion offers the advantage of showing the phase envelope

fluctaation in the time domain, and a frequency domain

representation can be based on the frequency spectrum

given by the Fourier series coefficient.

The zero representation is used to study different

forms of modulated waves based on the principle of f_ct-

orization in terms of the Fourier series expansion and in

the property of zero-pattern superposition resulting from _

the product of two signals. Multiplicative processes are

the most amenable to a zero-based description, and special



attention is devoted to the study of the characteristics

of this type of modulated wave from its zero-pattern

configuration. The zero-manipulation property makes

mathematical representation easier to handle.

A qualitative comparison between different multiplex-

ing systems in Frequency Division Multiplexing (FDM) and

Time Division Multiplexing (TDM) is also possible interms of

7 _t-_ _ _ r%_ r _ _'_,_q _-" _ _A_'

to study of crosstalk effects in multiplexing systems

whose mathematical analysis has not been developed so far.

Tensor analysis is employed in the multi-space in which

the zeroS of multiplexed signals are located. The eval-

uation of crosstalk in terms of tensor forms results in

simplification when automatic computing techniques

are used.

A complete computer program has been developed in

two different versions to yield the "zero-locus" of the

modulated waveform. Some guidelines to compute the inter-

channel crosstalk were also developed.

The thesis concludes with a comparison of different

_u_uxpxex±n9 systems.
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1.0 INTRODUCTION

1.1 Backqround

In radio telemetry applications it is necessary to

transmit more than one channel of information simulta-

neously. It is usually impractical and inefficient to

use a separate radio link for each channel. The saving

of space, weight, and power is an important consideration

in _he design of a muiticnanne± system. Such a process

of transmitting more than one channel of information

over a single link is called multiplexing.

Although there are other multiplexing schemes feasible,

only two general methods of multiplexing have been commonly

used, namely frequency division multiplexing (FDM) and

time division multiplexing (TDM).

A simplified block diagram of an FDM transmitter is

given in Fig. 1.1-1. Frequency division multiplexing uses

a separate "subcarrier" frequency for each channel with

enoagh spacing to provide non-overlapping frequency inter-

vals for modulation of each subcarrier. The subcarriers

are modulated by the information signal in each channel and

are linearly added to form one electrical signal which

again modulates the "carrier" frequency. The modulated

carrier is transmitted. At the receiving end, as is shown

in Fig. 1.1-2, the modulated carrier is demodulated to

recover the transmitted form at point D a. Then the
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modulated subcarrier signals are selected by linear band-

pass filters. After demodulation of the subcarriers, a

final low-pass filter will give the transmitted message.

In general, the waveforms at locations marked with primed

letters in Fig. 1.1-2 correspond to those locations marked

with the same letters (unprimed) in the transmitter,

_c_pt for noise and distortion.

A time division multiplexing (TDM) system works in

a completely different way as is shown in Fig. 1.1-3.

Samples of the information waveforms are taken by the

commutator, which rotates rapidly enough so that these

waveforms change only slightly between samples. The

sequence of sample pulses next modulates a carrier fre-

quency, and the modulated carrier is transmitted. The

receiver performs a reciprocal operation as is shown in

Fig. l.l-4. The modulated subcarrier pulses are routed

to the appropriate output channel by another decommutator.

The selected pulses are then integrated and interpolated.

The interpolated wave is then passed through a low-pass

filter that reconstructs the original signal.

The duality between the FDM and TDM systems lies in

the fact that the FDM system combines multiple information

channels in the frequency domain, whereas a TDM system

combines several message sources serially in the time

domain and transmits them in parallel in the frequency
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domain. Frequency division multiplexing and time

division schemes will be analyzed and discussed in some

detail later.
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1.2 Systems Specification

The FDM and TDM systems occur in many forms, according

to the type of modulation used for subcarriers and carriers.

An unspecified system is symbolized by XX-XX, where the

first group of letters refers to the type of subcarrier

modulation, and the second group of letters refers to the

the messages amplitude modulate the subcarriers, and the

sum of the modulated subcarriers frequency modulates the

carrier. Similarly, "triple" modulation systems can be

specified. In such systems, there is a group of double

modulation waves with spaced carrier frequencies which

may be used to modulate a still higher frequency carrier.

A critical study of the different systems was first

made by Landon in 1948. The efficiencies of the different

conventional schemes were compared on the basis of:

a) Wide-band gain: signal-to-noise ratio of

one single channel of a given multiplexing

system is compared with that of one AM channel,

b) Threshold: average power required to obtain

the wide-band gain,

c) Minimum received signal power required for a

specific signal-to-noise ratio,

d) Signal-to-noise ratio on impulse noise

(only for some types of TDM)!
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e) Interchannel cross modulation,

f) Interchannel cross talkp

g) Mutual interference between multiplexing

systems operating on adjacent frequency

channels.

The classical theory of multiplexing had little

matical model has not yet been developed for the conven-

tional multiplexing systems. During recent years new

mathematical techniques have become available. One of

the new signal models is called the analytic signal. The

use of analytic signals provides a new and powerful tool

for analysis of conventional multiplexing systems.

Future aerospace communications systems will require

newly developed systems with increased channel capacity

and high efficiency. Most of the new multiplexing tech-

niques use hybrid models, and hence they feature simul-

taneous phase and amplitude modulation. Thus a systematic

mathematical study of phase-envelope relationships by use

o_ analytic signals offers the possibility of a general

theory of multiplexing. This thesis is concerned with

the application of modern signal and noise models to

multiplexing systems in order to study their properties

and limitations.



2.0 THE THEORYOF ANALYTIC SIGNALS

2.1 Definition

The analytic signal representation is very useful

as a theoretical technique for various types of signal

and noise waveforms. The analytic signal can be defined

as a complex function of a real variable whose real and

i_Lt_gin_zy parts form a tliiber_ =ransform pair. The

general form of the analytic signal is given:

A5 C*) = _ (.t) 4-j _' (t) (2_.I-0
an alternate form of which is:

where

i0

s(t) = a Fourier-transformable real signal

_(t) = a Hilbert transform of s(t).

Periodic signals are considered as Fourier-transfor-

mable, and impulses are also allowed. The actual waveform

is usually associated with the real or imaginary part of

the analytic signal. In other words, the analytic signal

As(t) representation is used for analysis in a way similar

..... _ _, _ c_tto eh_+ of using complex exponen_ia! 4_ A.C. c _ "4

analysis.

2.2 Hilbert transforms

_(_)= ,___? £*_<.___.._3g_ (a.z-,)
-- _ _ @-"t-



Ii

where P is the Cauchy principal value and is defined as

Since s(t) and _(t) form a transform pair

s<,'> -
-_ "_-_C

wiLh =_ i1_L_Li_,_ pLup_Ly _._''-..............u_=_J_v=u'_ by IIilbert,

namely

Equivalent formulas for (2.2-1) are:

A _ C_._-_

o -'_

Where Equation (2.2-3) is obtained by letting _-_ = _'

Equation (2.2-4.) is easily obtained from (2.2-3) as shown

below:

_
I

"D-"

__0o

-0

-'c
_I--¢



If

then the Hilbert transform of 5,<4<] is given by

12

----TF

_2he integrand in the first integral is an odd function of

; therefore, the integral is zero. Hence,

which leads to

--fr

_Z.9_- &>

I
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Another similar transform pair is:

/k

2.3 2ror_erties of analytic signals

TA_henever s(t) is Fourier transformable, its frequency

spectrum is given by

Equation (2.2-1) suggests that _(t) may be the convolution

of s(t) and vr_z - Therefore, the Fourier transform of

_(t) is the product of the Fourier transform of s(t) and

that of _-_ as shown below:

I

and, since Tr_

reduces to

Fe (_)

Hence for

is an "odd" function, the last integral



and these results can be expressed in terms of the

"signum function" defined as

s_n 0_ --
_o_- tU _ O

_-o,- W <O

I

O

-I

r _0

14

Thus:

Figure 2.3-1 The function sgn _.

F_,(_) =-5 _ _ _uF_ <_). 0.3- ,)

For positive frequencies, the spectrum of As(t) is

identical to that of s(t) except for the multiplying factor

(-i) that represents a phase lag of 90 ° . It can be seen from

Equation (2.3-1) that the Hilbert transform of s(t) can be

obtained by passing s(t) through a filter whose system.func-

tion is: H (0u) = -_ s%_ (_)

and whose impulse response is:

DL
k (+-) -- _-t
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This observation permits a simple proof of the property

that _(t) = -s(t). Suppose the output of the Hilbert

transforming filter _(t) is passed through another Hilbert

transforming filter. Then-the output of the second filter

would be _(t). The overall transfer function of the two

filters in cascade is:

Since S%n a (L_) = _ 12

or %(t) = -s(t), The Fourier transform of the analytic

signal becomes,} nsing the results above:

FA s

This is an important result in that the Fourier

transform of the analytic signal has no negative components,

so consequently its complex conjugate vanishes for positive

frequencies.

F
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Therefore the analytic signal is _an analytic function of

a complex variable in the upper half complex plane. Thus

when the Fourier spectrum of the actual signal is band-

limited(-OJo <60<+tOo), the Fourier transform of .the

analytic signal vanishes for all 00 except o <Co <_o, and

the signal energy is calculated by using Parseval's theorem

The real and imaginary parts of the analytic signal have

identical autocorrelation functions and power spectra,

which is derived below for a signal s(t):

_ c_) =- % c_. r_ c_ _ IF_(_) 1_
Now the power spectrum of _(t) is:

_c_ _ _c_. _-_=_-__o__¢_]_, _C¢_]- IF_¢_I_
and thus:

P_ c_ = P_ (_b

The autocorrelation function is given by:

Since the autocorrelation function is the Fourier transform

of the power spectrum:
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The magnitude and phase of the analytic signal

mathematically define the magnitude and phase of the

actual signal. Equation (2.4-1) gives:

where (<) = L5 (.)j

"envelope." The phase of an analytic signal _(_) is math-

ematically defined as the phase of the actual signal as

shown by Equation (2.3-4).

It was pointed out (Bedrosian 1962) that the envelope

and phase of an actual waveform have physical significance

only for narrow-band signals and cannot be measured

precisely except for pure sinusoids. It was also shown

that the correspondence of this mathematical representation

and that of the "rotating vector" or "phase diagram" are

employed to visualize a mathematical abstraction. The

analytic signal is a means of generalizing the phasor

diagram for use with modulated signals instead of simple

sine waves.
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Figure 2.3-2 Phasor diagram representing the analytic
signal

A definition of the analytic signal AS_ _ will now be

made in terms of the analyticity of the complex function

A s <_ of a complex variable z. A complex function is

analytic at a point if its derivative exists at the point.

Such a function has all order of derivatives at this

point and within some neighborhood of the point (Churchill

1960). A function is analytic in a region R if it is

analytic at every point in R. The Cauchy-Riemann equa-

tions are necessary conditions for analyticity of a

function.

Now let AS(_) be a function of the complex variable

The function AS{_> is called an analytic signal if:

a) As_> is defined everywhere on the real axis,

except at the discontinuities of s(t), the real

part of A_,

b) As(Z ) is bounded in the upper half plane (for

any value of _->0), and



C) A s (z) may have poles in the lower half plane

That the given function As(z)is analytic in the

upper half plane is shown by applying Cauchy's theorem

to the path of integration shown in Fig. 2.3-3, where

t=t is an arbitraty point on the real axis, but is
o

distinct from any discontinuity of s(t).

19

C

Figure 2.3-3 Contour for an analytic signal

The Cauchy formula gives:

r at- L
Now evaluate (2.3-6) at the point z=t O-

As(to)

because as the radius of the B circle approaches infinity,

the integral along B tends to zero and the integral along

the small half circle C is equal to



By taking the real and imaginary parts of Equation

(2.3-7), the Hilbert transform pair is obtained:

2O

-

It follows that the given signal in Equation

(2.2-1) is analytic as defined above. This important

result shows that the alternate approach to the definition

of the analytic signal yields the same result. The analytic

signal is defined in section 2.1 as a complex function

whose real and imaginary parts form a Hilbert transform

pair. Now from the definition of the analytic function

of a complex variable the property that describes the

analytic signal as a Hilbert transform pair is obtained.

Furthermore, it may be noted that



21

The function s(t) and _(t) form an orthogonal pair

___ gC'_ s ( J<") c_+._ = O

and by Parseval's theorem, these are orthonormal as well,

since

The phase and envelope form of the analytic signal

is defined

As(t3--]_c_') _-e_C_.J e -_(_'_ (a.3-_z3

This representation is particularly useful when comparing

the analytic signal to the modulated real signal. The

modulated signal appears as the product of two time

functions :

The symbol Ac<_ represents the "carrier," and MT<_ _ repre-

sents the modulating signal.

A_.C-t.'} -: e_-i_°_:

Assuming the general form as

the modulated signal becomes, (using SSB as an example):

and

For .other t!_pe.q of modulation,, the I_I [_l_J] is different.

_ ......... - -- -=
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Now, according to Equation (2.3-4),

This equation demonstrates that the actual signal

s(t) represented by (2.3-13) has an envelope and phase

...... ed by the a_-,alytic signal properties. The carrier

frequency 000 is usually much greater than the bandwidth

of the modulated signal. The phase and envelope repre-

sentation of the actual signal are wholly describable in

terms of its zeroes. Thus the zeroes of a band-limited

wave can be viewed as its informational attributes

(Voelcker 1966). That can be shown as follows:

Taking the natural logarithm of the expression (2.3-4),

one obtains:

and if I.[A_,C_)] is an analytic signal,

since from Equation (2.3-14)

" 0"
where H symbolizes the Hilbert transform. The Equation(_.3-1_

depends only on the envelope JAs(t>J 'shows that s(t)
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function

where _4<_i_ in z-plane, because As(t) is an a_]alytic

signal.

The real part of the analytic signal can be recov-

ered from the envelope if the logarithm of the signal

As(t) is analytic, and if the signal is free of "zeroes"

in the upper half plane. These conditions are met by

The conditions for I n[As(._] to be an analytic

function require thatln[As<_>] cannot have singularities

in the upper half plane. In other words, As(_ _ cannot

have zeroes there.

One way to eliminate the zeroes of As(t ) is to add

a positive constant to the real part of As(t ), so that

it will never be negative. Thus the modified function

whose logarithm is an analytic signal is given as

[_ + s (.t)] >O for all t. The subscript MP referswhere

to "minimum phase", that is, the function for which there

are no zeroes in the upper half plane. The second con-

dition for analyticity is also satisfied by the modified
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the normalized function (Voelcker 1966)

c

Equation (2.3-16) shows that when A(z) is zero-free in

the upper half plane, phase information is contained in _.

Some general phase-envelope relationships can be

extended to the cases of "non-minimum phase functions"

(Voelcker 1966) by noting that

u L

The symbol [_[o_ symbolizes the total number of zeroes

with subscripts U and L denoting the upper and lower

half plane. This general expression can be applied

without the requirement of analyticity and therefore

is useful for a large class of functions.

"One or more zeroes of A(t) can be conjugated without

affecting the envelope fluctuations." (Voelcker 1966)

This is important in multiplexing, there can be different

A(t) with the same phase-envelope as a whole. The phase

or the envelope can be manipulated to produce different

signal s without one affecting the other. Thus a "common

envelope set" will be;aszt containing signals thai differ

in phase but not in envelope or bandwidth.

From Equation (2.3-2_ it can be seen that the minimum

phase case corresponds to the first term Of the sum on
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the right side. The "maximum phase function" corres-

ponds to the second term:

aM,e,, =JActJI -

Clearly AM_ (L] is the translated conjugate of

A_p {t) . The same equation shows that grouping zeroes

is an additive operation meaning multiplication of the

functions themselves, since Equation (2.3-20) refers to

ACt] . Thus; an analytic signal can be factored

into as many multiplicative components as there are zeroes

in the signal. The above consideration may be summarized

as below:

a) The real part of the analytic signal can be

recovered from the envelope if the logorithm

of the signal is analytic.

b) One or more zeroes of As(t) can be conjugated

without affecting the envelope fluctuations.

c) An analytic signal can be factored into as

many components as there are zeroes in the

signal.

2.4 Analytic Signal Representation

The properties of analytic signals are illustrated

by a few example_:. A band-limited periodic signal has
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a finite number of zeroes in a given time interval, and

the zeroes are related to its frequencies. However,

band-limited aperiodicsignals have an infinite number

of zeroes and an assymtotically finite density of

zeroes.

a) The periodic signal:

Let s(t) be a periodic signal defined by

The "phasor" representation of the periodic signal given

above iss

K -_i/// Re

Figure 2.4-1 Phasor representation of s(t]-K-IB_¢
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The s(t) phasor is reproduced for the following

cases:

i f

%

J.-

az

a) K=o h) o<_'<:B ¢,) J< > _

Figure 2.4-2 Phasor representation for _(£)= _--B_s _

The same signal may be studied by use of its "zero"

representation by replacing t with z in Equation (2.4-2)

as:
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{ =3.s(z) = _. - _-- e j_z + e..-d'a
2

' 2_r-

where ;'. _-_p jwz

The roots of this last eauation are:

The result of this expression is:

because

_.j 2mrnZn-- # 4" = ------

figures for

Thus in this form the signal can be described in terms of

its zeroes.

The roots of Equation (2.4-5) give the location of

"zeroes" in the complex z-plane as is shown in the right

half Figures 2.4-3, 2.4-4, and 2.4-5, and their conven-

tional representation is given on the left half of these

_rr_ * . Areeoah (_-) lot r->B
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Figure 2.4-3

t

a) K "=O
Sine wave of conventiona]

b) zero array

29

6 I IL

representation

I

Figure 2.4-4

=cdj

L
l-= ;-%

t

Zero array representation as K parameter
varies

Figure 2.4-5 Zero array for

Q ,

i

&



A single frequency periodic signal
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has a second order polynomial representation in the complex

z-plane, and there are two zeroes in each period. These

results can be generalized in the following way: A band-

llmited _I< _o) periodic function s(t) can be

expanded in a Fourier series

- 7)

where T _ a_/_. . p-rto_

The characteristic polynomial of this function in

parametric form will be o_ second order. That is, its

representatio n on the z-plane will give 2n zeroes in

conjugate pairs. This double symmetry about the real

and imaginary axis follows from the properties of a

polynomial with real coefficients as it is in Equation

(2.4-6) .

Multiplicative Models for Analytiq Signals

The above theory is generalized now to demonstrate

how the signal-factorization principle can be used to find

the zeroes of the analytic function for more complex

signals.
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Given an analytic signal of some complicated form,

the complex z-plane will contain a zero-array which is

periodic with a period of q--- 2___ and has 2n zeroes per
co

period.

Consider the [_ zero in the pattern of T; it is

located at

of an analytic signal A((tJ

A solution for the zeroes can be obtained

With

(2 _ - 8)

as follows:

_ = e_p(-j_oZi) , Equation (2.4-8) becomes:

j_o(t -z,J

which reduces to zero for _ = a. and
l

where _ = _ _. _=i_
60o

and

(2,_ "8 b)

2Trr7
_L" = "-------

_o



Multiplicative Property

The "multiplicative property" associated with the

zero decomposition of a signal can be described as

n

a(? ]-F A<'(?

where Ai(t) is an "elementary signal" of the type

described above in (2.4-8); then

32

where

also

of;--_[a;] is associated with the _ zero, and

_ z,,li

where C_ are the coefficients of the expanded product.

The last expression describes the model of an analytic

signal associated with the n-zero pattern.

Summary of Characteristics and Rules for Analytic Signals

The following cha_-acteristics will be used frequently

in the present work:

a) The zeroes of the analytic signal are determined

by the factorization of its Fourier series as shown in

Equations (2.4-9) and (2.4-10):

i'-'l



b)

c)

d)

e)

f)
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A =
_.,, 0

If the bandwidth of one elementary signal is

defined as W= _----- J-where T is the period of
_Tr D-

the corresponding analytic signal, then the

bandwidth of the analytic signal A(t) is n°W.

The colmllon _llvelope set associated with A(t)

can be generated by systematic zero conju-

gation; that is, by replacing z," with x_

or _(X_.( with LO_,:I-1 "

If all zeroes are in the lower half plane, then

l_il < 4 for all L , A(t) is a "minimum phase"

function (MP), and its phase and logqrithm

envelope are a Hilbert pair as are their deriv-

atives.

If all zeroes are in the upper half plane, then

I_,'l -'_ 4 for all _. and A(t) is a"maximum phase"

function with k > n_ . The coefficients of the

Fourier seri_are reversed and conjugated. IA(t)l

is held invariant.

If K of the zeroes are temporally periodic

within the pattern and have the same ordinate,

then the product of the corresponding K ele-

mentary signals can be reduced by z-plane



scaling to a single elementary signal of

form:
- C

g) If complex zeroes occur only in conjugate

pairs and n is an even number, then

= 2(_+ _c)

where _ is half the number of real zeroes,

and Y_. is the number of pairs of complex

conjugate zeroes. Then the analytic signal

can be represented as

The real signal s(t) is periodic in T and

band-limited to__D_W, and the coefficients

in Equation (2.4-10) must exhibit real-even,

imaginary-odd symmetry about the _ thcoef-

ficient.

h) The signal s(t) can be factored into the

product of two band-limited real signals

where c% and _z denote the wholly complex par_6

and real parts respectively. If _ or _;es zero

then Sea or s_is taken as unity. The values

of _% and _are given by

_'_

34



±)

where Z_ = L_'±j]_.,I is the location of the ,'_k

conjugate pair:

n_

Logo -
Ck,t): ,

the 2n R real zeroes are arbitrarily arranged

into n R pairs (z_ _l) -

If all xeroes are of even order, then

and IA(t) 1 is band limited.
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2.____5Analytic, Signals ,A_olications i_nModulation Systems

So far the theory of analytic signals has been

developed to show how the "zero-locus" of such signals

contains their fundamental informational attributes. Now

a manipulation of zeroes of the analytic signal is shown

to modify the signal properties.

Classical modulation processes are based simply on

making some parameter of the carrier (such as amplitude

or angle) directly proportional to some linear function

of the modulation signal. A new approach to modulation

can be made through the theory of analytic signals, which

permits the development of additional useful modulation

methods. Toward this end, it will be said that a modu-

lation process is admissible if the zeroes of the modu-
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lating signal can be exactly recovered from the zeroes

of the modulated wave. The modulated wave need not

have the same zeroes, or even the same number of zeroes

as the modulating signal. The zeroes can be moved

about, inverted, or deleted for convenience, provided

that such manipulation can be reversed to obtain the

_i_£nal z_roes in a demoduia_ion process.

An application of the analytic signal theory to

modulation is illustrated in the cases of three classical

modulation techniques, which are Amplitude Modulation (AM),

Single Side Band (SSB), and Frequency Modulation (FM).

Analagous to the "root-locus" method in servomechanisms,

a so-called "zero locus" can be drawn, showing how the

zeroes of the analytic function vary as a function of a

parameter of the modulating signal.

2.6 /_L_plitude Modulation (AM)

_mplitude modulation is conventionally defined as

where _o is the carrier fr-equency, and s(t) is a real

modulating signal of bandwidth _+ _. In analytic form,

z



where

then

and

_AM(£J is the Hilbert transform of _ (e)
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• from

(2.6-I)

The zeroes of AA_(t ) are those of s(_), because s(_)

is real. The zeroes either must be real or appear in

complex conjugate pairs.

Introducing the property (_J of analytic signals

(from Section 2.4):

The number of zeroes per period n is:

(2_.6 -_)

For example, let the modulating signal s(t) be the two-

component square wave approximation shown in Fig. 2.6-1.

t

Figure 2.6-1 The two component square wave

representation
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Cos3_CO.S_c .,- -
It follows that the zero count is six from bandwidth

considerations as shown below in Equation (2.6-6). The

real signal can be expressed as

2_ _

In order to find the zeroes of the analytic signal m(t)

corresponding to s(t), replace the variable "t" by

to obtain:

S(,_) : ' C _" - _ - 6C× _ + 3x_"
" 4£x_ " J

where

j_ g

Thus the zeroes of the analytic signal are given by the

six roots of the equation

6
x - E× z_ - 6&x 3 + B x z -I = o

The roots of this polynomial are a function of the para-

meter modulation factor c, and it is a variation of c

that produces the "zero-locus."
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The analytic signal corresponding to s(t) is As(t )

where _(_ is the Hilbert transform of s(t).

(2.2-6),

From Equation

and when this is substituted in .Equation {2.6-7), it results

in

3

Now it is desired to find the zero trajectories as the

parameter c is varied. The technique previously indicated

can be used here as follows:

-" ' "_-"'" '-'-"-- { For z ---"-k ,,.j ¢"CZ] S ._..4.2 _'_ &...J_ t... _.4. k...,_

b) let x = ex/::, j_ 7

c) therefore, A_(7_) -= c..,., e..,,-p9'_z) _ _. e_p(j_oz.)

The zeroes of the analytic signal are given by

The simplification is apparent. The analytic signal model

provides a simpler way to find the zero trajectories of
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the original signal. In the previous s_mple, the

o_iginal modulated signal had a zero-pattern with a total

number of six zeroes, but it is found that the corres-

ponding analytic signal has a zero-pattern of three zeroes

given by the expression (2.5-10). A cubic equation

results instead of the sixth order polynomial of the ori-

_l _ignal. m'_ _._l_._-_,-,_ _-_l,-.,l_'................. Ions needed for

classical modulation techniques is one of the main advan-

tages of the use of the analytic signal representation.

In fact it is shown later that a more efficient mathema-

• tical description of the classical models will allow

development of further results,

Figure 2.6

I _
7"

Zero pattern for the real signal:
modulation

a) for 100%

b) for suppressed carrier operation
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2.7 Sinqle-Side Band Systems (SSB)

_ap!itude modulation systems are characterized by a

symmetrical zero pattern along the real axis in the

z-plane and envelope detectability in case of a strong

carrier.

It is known (Property _ of analytic signals) that

the zeroes of a modulated wave can be conjugate d without

its affecting the envelope or the bandwidth of the wave.

There will be a common envelope "set" of signals for each

modulating signal. The following examples show how

different zero-pattern configurations may represent the

same modulation wave; in this case, the square wave signal

of the previous example Equation (2.6-5) is used.

@

Figure 2,7-2 Zeroes of the non-minimum phase signal



A non-minimum phase signal (NMP) is arbitrarily

chosen in Figure 2.7-1 to represent the square wave

signal. It has zeroes in the upper and lower z-plane.

The same square wave signal is represented in Figure

2.7-2 by an arbitrarily chosen minimum phase signal (MP)

that has all its zeroes in the lower half z-plane.

various experiments (Voe±cKer 1966) show that the NMP

pattern with zeroes in both UI{P and LHP yields a more

symmetrical spectrum than the MP pattern.

42

q-

F

Figure 2.7-1 Zeros of minimum phase signal
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The structure of both zero patterns are now asym-

metrical in contrast to the symmetry found in the previous

examples (2.4). The envelope and bandwidth character-

istics are not changed, however, since the zero count

remains the same, and they both represent the signal of

Figure 2.6-i1, as can be shown by following the procedure

_a_ed _ S_c +_ o 4 _i_ ' ' ,,-_

;_alytic signals.

Consider the pattern of Figure 2.7"3 below where the

zeroes are given:

Z,' -

t

o.)

._'rc

0

_o

t

Figure 2.6-3

- _ _,, cosA ¢'2

Minimum phase signal

I I I II •
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A substitution of the zero coordinates in

c_<.= _><,_(- j'<,.>_,.J

and an expansion of s(t)

° 0
where

.,, . _Fj,-.,t
results in

7
where the corresponding modulated signal, will be:

where _° is the carrier frequency.

The previous discussion demonstrated that envelope

and bandwidth are preserved so long as the zero count is

not changed, and these zeroes can be recovered by rear-

ranging the zeroes of the modulated wave into conjugate

pairs.

If the zero pattern is modified by decreasing the

zero count, the bandwidth of the actual signal is reduced.

One of the most interesting cases of reduced bandwidth is

that of SSB. In single sideband modulation, half of the

zeroes are suppressed. Since all zeroes are in conjugate
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palrs, only one zero from each pair can be specified in

order to determine the complete pattern, remembering

that deleted zeroes will be replaced during demodulation

via conjugation of the transmitted zeroes.

Let it be supposed that the suppressed zeroes are

located in the UHP. The remaining zeroes correspond to

_ _ signal ,_,_ is the ............ _" -_ _-

7h_ signal (AAM). The envelope of the half-suppressed

zeroes signal must be the square root of the MP-AAM signal

with half phase excursions with respect to those of the

M2-A._:M signals. For this reason, the reduced -zero MP

signals are termed "Square law single-side band" (SQ-SSB).

This means that their bandwidth corresponds to that of

conventional SSB, and the envelope can be recovered by a

square-law envelope detector. A practical transmitter

for SQ-SSB is shown in Fig. 2.7-4. "Experimental tests of

this circuit are described by Von Urff and Zoni (Von Urff

and Zoni 1962).

Now consider the case in which the modulating signal

contains an odd number of real zeroes. The reduced zero

pattern must contain an integral number of zeroes. The

procedure which reduces the zero count to a "sideband-

and-a-fraction" is called "partial SQ-SSB." An example
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_Y

RoOT

Nt_.,_£_ T [

Figure 2.7-4

PH4_
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1
O _s _ TO L_

An SQ-SSB modulator transmitter (Voelcker

1966)

J
0

l

7-

Figure 2.7-5 Zero pattern for SQ-SSB with •odd number
of zeroes
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of parhial SQ-SSB is shown in Fig. 2.7-5.

Since the process of modulation and demodulation for

partial SQ-SSB is neither simple nor practical, no further

discussion of it is included. However, it is instructive

to examine the relationships of zero reduction, bandwidth

reduction, and efficiency at this point. It has been

shown in S_ctlon 2.3 how it is always possible to force a

real signal into a wholly conjugate zero form by adding

a convenient constant. The addition of the constants,

however, results in a loss of efficiency. Another solu-

tion is to process the complex zeroes of s(t) through the

SQ-SSB system and the real zeroes of s(t) through SSB in

separate processes. This solution requires synchronism

and conditions of sufficiency.

In order to examine the details of SSB, let the

analytic signal representation of the message be given as

and let the messages be modulated by the carrier

j'_°
A_C_) = e

(2.7 -_)
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thus resulting in

A_,s.__ (_2 = A_(_) .A_J

'.Th_ _nvelope is then given by

t: '"

Equation (2.7-7) represents a simple sideband modulated

signal, which can be seen by noting that sin_.# and c_ _.6

form a Hilbert pair and writing the Fourier expansion of

s(t) ana _[:.)as

-_'U , Z co_,,-,(_,,_ ' y,,
/?=_,

t"/_" ,Q

Eqaation (2.7-7) can then be rewritten as

+

.,] _o..=,-<=o-=.I=•
42..7 -/I)
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The last expression shows how the frequency spectrum of

5(t) is translated by the amount _o , the carrier frequency.

I I

Figure 2.7-6

t.

l
!

_o ¢-._. _
4.. 9,.

¢'_, _i++.l+

Single-side band spectrum of As(t )

cO

_'or OOo _ 0

i _ Coo- ,,o°)
_:+,u++ (c+j : 0

6"+) > _)o

)cOI < C_o
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where the USB is the uDDer _ideband of the SSB modulated

signal, note that the lower sideband is given by

since the spectrum of Aq, sss(tlvanishes for positive

fre_aencies as previously indicated (Section 2.2).

SSB can then be characterized by the half band-width

technique in freq_lency demain and the linear operation

of frequency translation, this linear operation does not

a linear chang e in the zero pattern of the actual

signal as it appears in Fig. 2.6-2 when the linear modu-

lating parameter vanishes. _..,,_._,,_l+_.... % there is no corres-

pondence between the linear operation observed in the

frequency domain, and the zero patterns change (non-

linear) in the z-plane, the zero-locus provides new' and

u_efu! information as is shown later.

Let As(tJbe the analytic form of the square wave

u_ed in the example (2.6-5).

j Ct)

3



51

As the modulating parameter c decreases, the zero pattern

shows the following representation:

I
L IT

l I I
I

I

O O

I O

j0-

n- l

bJ c= .667

I

] I

I I

j'0" jc"

C

O

c_/ c= • _7_- dj c=O

Figure 2.7-7 Zero pattern representation of the

analytic signal
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As c decreases, the zeroes curve up and when zeroes

appear in the UHP for c = 0, corresponding to the case of

the suppressed carrier, only a pair of complex zeroes exist

in the L_=IP.

The example can be generalized by writing, again, the

analytical signal of Equation (2.7-11) in the Fourier

_4es expansion

n

.

where (Section 2.6 "Multiplicative Models for Analytic

Signals") c is the modulating parameter and c,. _ are

the coefficients of the expanded product is a result of

the signal factorization principle.

Whether or not SSB is a "coherent" modulation system ,

or, in other words, if the zeroes of the real modulating

signal can be recovered from those of the analytic signal

is the question that will be answered next. Looking at

w

the transformation itself, the answer must be positive,

because an analytic function of an analytic function is

itself analytic, and its properties of analyticity are

retained. Looking at the zero count criterion, the only

condition imposed is that the zero count must be preserved

order that the recovery of _e [A_(t_ be possible.in
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According to Voelcker (Voelcker 1966), this is possible

when the carrier is not suppressed completely. The

reason given is that if the carrier is suppressed com-

pletely, the zero count and dimensionality are reduced

according to the preceding criterion. SSB-SC can, however,

be an admissible process if one can replace the lost

_._ by vixLu_ of p_ior kno_iedge or "side-information."

Therefore, SSB-SC is an insufficient process which requires

exceedingly sophisticated techniques.

The recovery process of SSB is based on generating

A _ (_ by a comoiete conjugation of the transmitted

zero pattern. The requirements for recovering the mod-

ulating signal without distortion are found in Voelcker

(Voelcker 1966).

2.8 Wideband Modulation

_e =y_LJ_u_ P_,_ _L be u=_u _u± =_igze modulation in

general, except when otherwise specified for phase mod-

ulation.

Narrow band processes are characterized by preserving

or decreasing the zero-count. The next logical step is

to deal with processes which increase the zero count.

Classical analysis of wideband processes involv_a differ-

ential equation and Fourier expansion approach which yields
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a complicated series of Bessel functions whose physical

significance is difficult to understand. An analytic

signal representation along with a zero-locus manipulation,

however, provides a new insight into the characteristics

of the wideband process.

Wideband processes can be viewed in either DSB or SSB.

.... _ ...... _u_u_ ill g_li_rai is conventionally defined as

where _o is the carrier frequency, and

the instantaneous phase angle. Where

_(_) = MpM _(_) for phase modulation (PM)

_([) is defined as

(2 8 -_)

_; (_) -- _ _-_:tJ _t for frequency modulation (FM)(28-2_)

and where s(t) is the modulating signal, Equation (2.7-2a,b)

can be expressed by a common modulating function _ _ _(t)] ,

so that the newexpression for Equation (2.8-1) becomes:

_,o_<"_ "_bo_+'_{_'_jl ¢._._-_
The complex form of Equation (2.7-1) is:

_:_; : _ _:_c_J_/>j_o_J C_.o-_,)
where
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It turns out that J_ (£)I is constant; therefore,

_,(t] must have an infinite number of zeroes, and they

are located at infinity. In other words, the expression

(2.8-4) is not analytic, and zero manipulation is not

possible. It is necessary, therefore, to evolve band-

limited analytic models that can converge to the conven-

_ionai expression (2._-_) under suitable conditions.

An approach to the analytical representation of angle

modulation is a basis of Armstrong's method (Armstrong 1936).

The conventional phasor diagram for AM and PM is shown in

Fig. 2.S-1.

US_

,l _- _L.._

_) A ,,ph'/wde ,_odul_ l,'_,_

.0.4.
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The classical approach to FM suggested above yields

the expression:

FM

where Jp(D) is the Bessel function of the first kind and

order of p with argument D as the modulation index. If

Fig. 2.8-1 ; is redrawn utilizing the different components

of the above expression, Fig. 2.8-2. results.

US 8

_v_n O_q_ "_

lu-

Figure 2.8-2 Frequency modulation
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The analytic signal approach to FM suggests that for

small deviations, angle modulation can be represented by

quadrature modulation (QM) where QM can be derived from

_\[ by a 90 ° relative phase shift between the constant

carrier component and the modulated carrier component.

Fig. 2.8-3 shows the phasor diagram for the QM signal.

In

/ \ \

R_

Figure 2.7-3 Quadrature modulation

This phasor representation corresponds to the case of

angle modulation for small deviation which is given in



conventional form by

58

Figure 2.8-4 Phasor diagram for small deviation PM

by

The AM of Fig. 2.8-ia is described in analytic form

(_._ - £_

with o 4 B< { and _ _o

The zeroes of Equation (2.8-8) are easily found by

the techniques explained previously in Fig. 2.8-5.
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&O
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Figure 2.8-5 Zero pattern of As,AM(t)

The AM analytic form is converted to QM by the 90 ° relative

_ .phase s._fZ shown above.

and its zero pattern is:

\\\\\

,J'O-

zal

\
\
\
\

\,

Figure 2.8-6 Zero pattern of As,QM(t )
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where the parameter B is given by("Multiplicative Models

for Analytic Signals" 2.4) :

For 5 << 4

B = ¢o=e_a _ITJ

gives a good approximation to FM in case of small devia-

tions.

The procedure for co[n_structing zero patterns when the

moduia_ion signal is an L component real part of the

Fourier expansion for the modulating signal is given by

J_

L.

I
i

2..=;
/or o_c_'<<¢ '@.&-/o.)

The steps are as follows:

i. Assign 2_L zeroes per period T to the [

component of _{_(_J}. Let the zeroes be

located in periodic conjugate pairs within

imaginary component

t_
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o
I
I
I

?
2_

i__

Figure 2.8-7 Construction of a zero pattern of

narrow band angle modulation, step 1

2_ _hift the L_D and TVqm zeroes _ seconds rSgh9

and lefz respectively. The analytic signal

produced by this shift is:

,jO'--

°
I

"C' 2,7"

l
.___._.J

I
o r<'+ _ 6

¢

0

Ficjore 2.8-8 Construction of a zero pattern of narrow

ao.mle mo¢;_lo.iD_ step 2
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3_ Repeat steps 1 and 2 for each component of

l aCe)j Superimpose the zero patterns

thus constructed and multiply the A_4 (_ to

obtain:

with a zero count of

/

_[--7

and with signal deviation o<c[_

Thus the expression that allows the calculation of zero-

patterns is:

it turns out that the last expression is analytic

under the condition that the phase deviation of the

actual signal approaches zero. Each factor A_(_)is a QM

elementary signal. /_, eM CtJ , however, does not represent

a quadrature carrier modulated by _ {&(_)i " but, since

the Q_[ modulating process is a zero preserving process,

A_,p,,_ _,) is an zero expanding process.



63

Wideband Anqle Modulation

The conventional a:ngle modulation in analytic form

is defined as

A_(_) = e jMt_cut (2._-,_)

where the message As(t ) is frequency modulated by the

the modulated signal will be

= e. ¢

t2., - '<)

The last expression represents conventional PM, but

it Is designated as DSB to emphasize that the spectrum

is zwo-sided about _o

_he expression (2.8-18) shows that the spectrum of

such a signal extends to infinity in both directions;

themefore, the shift of _° in the frequency domain cannot

produce a spectrum containing only positive frequencies
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(Pig. 2.S-9), and _he above reigresentation (Eq. 2.8-18)

in itself cannot be analytic.

I

lilt

Figure 2.8-9 Spectrum of AD_s,_ (_)

IZ is necessary at this point to apply the results

obtained in the preceding section (2.7). Using QM ele-

mentary signals of the the type of Equation (2.8-12), one

redefines:

As_,N [e) =
,'v

and using the multiplzcative property (Sec. 2.4) of asso-

ciating the elementary signal

r_
ff N

A.D$5 ,PH ,iv ,.



It can be shown (Davenport and Root 1958, Downing 1964)

that by applying the techniques of the Central Limit

Theorem

65

in _:quarion <2.7-19) uhe above properuy yields:

= --. - k_ • ,.,. --_j

where n A/ = /V/-(z_,-Q is the zero count and _ the ordinate

of'complex zero in the z-plane is:

I_I - _ ,_,-__o._ __i_'_ C_._- 2,)
L_ H

Equation (2.8-20) exhibits infinite zero count

(infinite frequency), infinite carrier frequency, and

infinite zero ordinates. Again some limitation is necessary,

since according to Dugundji's squared envelope theorem

(Dug undji 1958), whenever an ideal angle modulation is

forced to be band-limited, envelope fluctuation must appear.
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The requirement for finite bandwidth forces N to

be finite, and the dis toi-tion problem arises. The zero

count can be minimized to yield allowable distortion, or

L

A
/_, PM t sL

f=#

I}]g--I

\51

and B 2 is the specified distortion parameter which is

less than unity. The envelope distortion associated with

Equation (2.8-22) is:

(2 8 -25)

and the angular distortion is of the order

sL_ L--_

(Voelcker 1966).

(2 8 - 2_
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Single Sideband Angle MOdulation

The analytic form describing a SSB phase modulation

system for the modulating signal

(2._ -2_ 9

is

-: _" L .... <>" _"t-'-u 'J ....... "" _:J

Since an analytic function of an analytic function is

also analytic, ASSB,FM(t ) will be analytic with

J'z\s 8'" t -- L- 5(ujj (.2.a-27)

The spectrum of AFM, SSB(t) must vanish for oJ<_)o.

Since the modulation function is now analytic, and thus

it contains no negative frequencies. The spectrum s_ill

extends to infinity in the positive direction. As further

proof of the same property, let:

a_



where /. (_) = _ {s(t) 1 is used to simplify the calcu-

lation. Now let

and neglecting the constant

68

O3

where _ is the peak frequency deviation.

function in this case will be:

AD (O :

._ - 2_J

_2.8 - 3o)

The analytic

= _p _- -J

,,<=<>_! { _

K

or

A;CO _. =Z
iCI I" O i<l

t<
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wave
Figure 2.8-10

Frequency spectrum of A/,(_ modulated

fore established. The sketch of Fig. 2.8-10 illustrates

Equation (2.8-31a).

Now let:

I

and

CO

thus

and 4O



Finally, combining the real part of Equation (2.8-31a)

and Equation (2.8-31b),

7O

C2._ - _2_ 1

_-*_ J _ Tk--J)
K:O

(2_ -926)

_.. J_°_

m,o

</ . .___r'_, _) t
k=o

Figure 2.8-11 Frequency spectrum of ASSB,FM(t )
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For SSB with suppressed carrier (SSB-SC), note that

by replacing

_quation (2.8-28) becomes:

+z ,%.,o,.[_+_,,+,<,...,oj<-+<,<<g
I,('-- o

C_J

Figure 2.8-12 Frequency spectrum of SSBSC angle
modulation



72

The zero mod.{l for SSB angle modulation will now be

analyzed. By observation of Equations (2.8-6) and (2.8-7),

ASSB,PM is a PiP function, because its phase and the loga-

rithm form a Hilbert pair. Therefore, all the zeroes must

be in the LHP. Also note that

and the spectrum of the righthand expression must vanish

for UHP and for _>o. The two factors of Equation (2.8-32)

can be interpreted as the USB and the LSB. Then angle

moaulct_on is given by multiplication in the time domain

or by convolution in the frequency domain. The multipli-

cation in the time domain of the analytic signals means

_ne superposition of their zero-patterns in the z-plane

(see the properties of analytic signals in Sec. 2.4). it

follows that the zero patterns of the SSB angle modulation

is the superposition of the zeroes of the slu_m_d_'-_...... ; _e_-e-

fore, they lie in the LHP portion of the z-plane.

By following the same steps of calculating the zeroes

of DSB, the following type of formulation is obtained

(Voelcker 1966) :

L ,)i(N_)

Nt



The smallest number N L determining the zero count

with tolerable distortion is given as

N L _ L I
CL

7-

and the ordinates are given by
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L_ c'
L

The bandwidth requirements of SSB angle modulation

are half that of conventional angle modulation. This

favorable feature is diminished in practice by the fact

that experimental data does not verify this compression

of two-to-one because of factors not considered above.

Furthermore, current methods of generating SSB angle

modulation are quite expensive. For instance, if s(t) is

a bandlimited signal as discussed previously,

3

The modulating functions are:

The parameters _ , _3

and _ =

are defined

m_×_'mum p&q._e, aevioho,

<.2B -40]
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For conventional PM, the zero pattern can be constructed

in the following manner. Recall that

where

A/[ is the smallest integer > k 7 _ZE-4

c_ is the coefficient of "[" component real Fourier

series of modulating signal

B is the specified distortion.

L is the number or real component of Fourier series

Now for the square wave Equation (2.8-35), let:

8_ _o. 4 / = 2_

and for L= _., the following parameters are found:

(2.8_ -z_3_

U=Z c_=,J

TL _'= 0 "= /.

i

C.L = _.4 = 2.

(< /"
z_ _o

O.Z_



I

!

I

and

and

c; .

Pot [..3 • the parameters are found
to be:

CC -. t

n

3

L= 2

tT-j :
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I
/

I
I

I
I

3:4 lj

l". <,j./,+o,;_o._
Pinal.7.2. '

<" _:" e<p,_<a£



The zero pattern is shown below in the z-plane:
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j Q-

2m

(o)

Z

(o) (o)

7-_ zn
OJ

L--

Figure 2.8-13

I_L_-- _ _O_

Zero pattern for conventional phase

For SSB the zero pattern is the LHP portion of the

conventional angle modulation. Therefore, the pattern

of Fig. 2.7-14 is obtained.



2vr

LI
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Figure 2.8-14 Zero pattern for SSB phase modulation

Noue nhat the same resuin could be obtained by calculations

made using formula (2.8-33a) and formula 2.8-34).

It is simple to follow the same procedure to obtain

the zero pattern for FM in both cases, conventional and

SSB, FM. It is also interesting to point out that the

mapping of real zeroes of function Equation (2.8-46) is

easily obtained by representing first the zeroes of

Equations (2.8-45) and (2.8-44), and then shifting to the

right the zero pattern in LH_ and the left those in the

UI_ by the quantity:

TT

The next step is the expansion of zeroes to the NL degree

given by distortion limitations. These two steps can be
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reversed in a similar process to recover the modulating

signal (its zeroes) from the angle-modulated zero pattern

signal.

2.9 Computation Techniques fo___rrFinding the"Root-locus"

of an Analytical Signal

The development of a modulation process from zero

manipulation involves the solution of polynomial of high

order as was shown in the last section and can be

handled easily by the use of automatic computing techniques.

Bairstowe's method is used to write programs for the roots

(see Appendix A). However, even though it is considered

one of the best, Bairstowe's method lacks efficiency when

the parameters of the quadratic factors P and Q are

initially chosen too far from the actual" values. An

attempt has been made to improve the efficiency of the

Criterlon and arriving at a uniquemethod by using "Routh "

way of approaching the actual values of P and Q (Appendix

B).

This useful and efficient method is applied to find

the zero locus of the analytic signal representing ampli-

tude modulation as described previously. The real and/or

complex zeroes of the equation for x are used in "plot



functions" to obtain the graphic representation of the

zero-locus

by varying the modulating parameter c. The computer

program results are given in Appendix C, including an

explanation of the efficiency this method provides.
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3.0 FREQUENCY DIVISION MULTIPLEXING SYSTEMS

Frequency division multiplexing systems have been

defined and briefly described in the first section of

this thesis. The theory of analytic signals presents a

new approach to the mathematical description of conven-

tional multiplexing systems. This section describes in

__ J___, _ J_n_ _ • ....
g:-e&_e_- __ _ d_ff_it r_l_l _ystems by ai_piying the

models _nd techniques developed previously. Section 2.0

covers the new concept of "Zero-locus" and its signifi-

cance when an analytic model is used to describe different

niodulation techniques. Conventional multiplexing systems

=_e _--_ on ordinary _"_'-- - _--" ....._,_.,,.,_,J_=_.J_,.,_ t_c_u_ with addi-

tional limitations imposed by the complexity of the

previously can be applied, with certain restrictions,

_JJ

to multiplexing systems, such as the widely _ued systems

SSC-FM which are discussed in detail.

3.1 Subcarrier Modulation Process

The subcarrier modulation in FDM systems consists of

a modulating section in which a sequence of sinusoidal

s_bcarriers produced by local oscillators, one for each

channel, is modulated by the individual messages. The

modulation process depends upon the specific type of
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modulator chosen for each subcarrier. In the single

sideband-frequency- modulation multiplexing system

(SSC-FM), for instance, each subcarrier is single-sideband-

amplitude-modulated by a message. A conventional SSC-FM

system is represented in the block diagram of Fig. 3.1-1,

where the subcarrier modulator and local Oscillator is

__" _-_ for each _ .... _ m_ _ _,,,_,,l _4-_,,_ _,.._,-,-_ _,.,-

is passed through an amplifier <_ which is determined by

signal-to-noise requirements. The resulting waveforms

are linearly multiplexed into a single composite waveform,

which, in turn, frequency-modulates the radio frequency

carrier which is generated also by a local oscillator.

To explain the subcarrier modulation, suppose that a

m_n_g_ _fe_ _s given _

_J _ E _ _ j __ t (3., -_)
--,_,

in suppressed carrier transmission, c_ is zero. Let

s(t) be a two-component square wave which was used

previously

3
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and therefore its analytic form is given by
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a

Equation (3.!-1), which is the expression for single

sideband , may be represented in analytic signal form by

f!

/<=1%,

whe_-e ¢o=O for the carrier is suppressed.

The zero-locus of the analytic model as a function of

the c ...... _ o_a .....d by using techniques of_,_,,L_ _._. can be _ 4_

Section 2.0. The analytic form of the actual signal again

offe_-s the advantage of halving the number of zeroes in

the z-piano_ _niq apprn_h tn m_]]t_n]_x_n_ is possih]_

if the zeroes of the modulated signal can be recovered

in exact numbers, because the modulated wave is required

to have the same number of zeroes in the modulating signal.

They can be moved about, inserted, or deleted if such

manipulations can be reversed in a demodulation process.

The modulated signal in analytic form is:
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i4odulation does not affect the number of zeroes of

the original analytic signal, which i_L_lie_ = _pectrum

translation along the frequency scale to a side-band

of the subcarrier _o The single-sided nature of the

actual signal is preserved in a synchronous demodulation

process.

3.____2Th____eLinear Multiplexing Process

Multiplexing communication systems may be divided

into basic categories: linear systems and non-linear

systems. A multiplex system is linear or non-linear

according to whether the separation of signals belonging

to different channels is affected by linear or non-linear

_ilters. The conventional frequency and time-division

multiplex systems fall into the category of linear systems.

Multiplexing is a linear operation in frequency

division systems, and it reduces to simple addition of

the different channels in the frequency domain. There is
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_lo overlapping of adjacent messages in the frequency

domain if appropriate selections of subcarrier frequen-

cies for the individual channels are made. The multi-

plexing signal resulting from this linear operation is:

:)

power ampliZler K_ is included for the i,_n ch_nel,

because of the parabolic noise s_ectrum that appears at

the receiving end of the modulated carrier when frequency

modulation is used for the carrier (SSC-FM) (Fig. 3.1-1).

The parabolic form of the noise spectrum S_,_ ({_ in

FM systems is given by (Downing 1964)

[ o f_

where Kz is the z_ noise spectral density for fl>o and

A is the signal amplitude. In SSC-FM multiplexing, each

of the message-channel bandwidths Bi is ordinarily the

same 5m and is much smaller than the total baseband

bandwidth as indicated in Fig. 3.2-1.



91

f
/

I
4'

81'

<'_ c_o._(

F

Figure 3.2-i FM baseband noise power spectrum

The _:°_w_.... _p_.______ -/ _ _ _u_ssary _D_e--elnpnasls

to the _'Ik channel for an equal per channel signal-to-

noise ratio over the entire baseband of the carrier. Thus

for SSC-FM systems, the linear combination of the signals

is of the form

The non-overlapping condition imposed by the defini-

tion of the linear operation preserves the zero-pattern,

so that the total number of zeroes is preserved. The
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density si]ectrum appears over the entire waveband as in

zlg. 3.2-2.

T!IIllII
Figure 3.2-2 Density sprectrum at the output of the

mixer

Let an individual z-plane be defined for each signal with

t

its zero-locus theoretically independent (crosstalk and

channel interference will be considered later). After

multiplexing, each modulated subcarrier has its own

z-plane containing the zero-pattern information of its

orig ".'_I__ .._._..._=l The relative po_t_o____ .. for each zero-

pattern along the multiplexed channel is given by the

phasors v l, v 2...v n that rotate counter clockwise with

phase angles _ot , a_ot , _[ respectively.
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Figure 3.2-3 Phasor diagram for multiplexed signals

Each phasor V_ occupies a sub-space[_,a subset of a multi-

dimensional signal space _.

/ _2
/

.,11

Figure 3.2-4

signal-space

Geometrical representation for linear
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In applying the geometrical approach, a linear set of

signals such as _ corresponds in the signal space to a

linear manifold >- L , which is a linear subspace of

Straight lines and planes are linear manifolds in three-

dimensional space. It is impossible to visualize a multi-

dimensional linear manifold, but its properties can be

2ig. 3.2-4 shows the geometrical representation of

two sets of signals, _ and _z" If the subsets _-_ are

linear and disjoint, their representations will be straight

_e origin of the system of co-lines pass',ng through _

ordinates defining the _-plane. Assume that the plane _

is specified in terms of two vectors with componen{s

Q._ _,.] and that _ is, an_a. __

similarly specified by two vectors with comi_onents

(_'_ , _2{ , _a*_ , a_,_) and
Form the matrix

whose columns represent the vectors in question. The

first two column vectors may define the z-plane of

complex zeroes for the signal vl(t ) contained in the signal

space _ , as the third and fourth vector columns do
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for v2(t ) . The zero-pattern combination of the components

Vl(t) and v2(t ) lies along the vector space V. The zeroes

of the components vl(t ) and v2(t ) in the composite z-plane

yield information about channel limitations,to include

crosstalk as is shown in Section 3.5.

in geometrical terms the linear filtering required in

_c_.v_d-_ _x....... :_ _ .......... i pro3cct _,,_ the _'_ _

signal v(t) on the plane >-_ along _2 , thus yielding

the signal vl(t ) in channel one. This transformation is

given in matrix form by

V., = W'., • V

where '_/_ is the matrix representation of the impulse

respone of the filter. The elements of the matrix

are obtained by the general expression.

-t

Here _0 is the general element of the matrix _, and _,_/.

is that of the inverse of a. The operation (3.1-5) can

be performed, and the message recovered if the signal

spaces >q, and >'z are equally dimensioned. Fig. 3.2-5

shows the case in which v cannot be extracted from

v I + v 2 because the sum of the dimensions of _4 and _-_

exceeds that of _ .
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Y

Figure 3.2-5 Case in which signal spaces Z I and _z
are not equally dimensioned

The conclusion that stems from the above discussion

(other important considerations such as distortion and

crosstalk are considered later) is that the bandwidth of

a linear multiplex system cannot be compressed. ±_ u_

words, if the n ichannels have the same bandwidth, and the

_=_+__.._.._.. is equal to _/o , then the total bandwidth nec-

essary for the common cha_%nel cannot be less than the total

sum of the bandwidths of the components _ Wo.

3.3 Carrier Modulation

The composite signal obtained after multiplexing

n



is now modulated by a carrier of higher frequency than

that of subcarriers produced by a local oscil_tor.

Fig. 3.3-1 shows the carrier modulator for the SSC-FM

system where frequency modulation is used.

97

,'_40 DuLA To_

Figure 3.3-1

!
I
I

I I
I c,q,er_,,_,_ i

_x;8 - FM

Carrier moduiation section

The analytic form for frequency modulation was des-

cribed as

" ,¢,0 o _

As_8, __ (_') " A, (d • e)

,a.3 -2)
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for single-sided frequency modulation. The zero model

for SSB angle modulation developed previously (Sec. 2.8)

yields

where

t_

represents a QM elementary signal. Fig. 3.3-2 shows a

scheme that uses quadrature modulation to produce ASSB,FM"

° I
m_; rn,.(_J Z_Z.;GaAr, W6

_Roor.,,cr" [_ ,4oO/A"_-

J [

Figure 3.3-2 FM modulation network
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The modulated carrier is finally transmitted, but

the transmitted signal is not received in its original

shape. The effects of noise and distortion are consid-

ered in the next section.

3.4 Noise and Distortion

Consider the receiver system. The signal transmitted

plus added noise form its input (Fig. 3.4-I). To evaluate

the effects of noise is a difficult task, but it is easier

to estimate the performance of the various systems in the

important limiting case of high signal-to-noise ratio.

Thus the efficiencies of various schemes of multiplexing

are compared on the basis of their signal-to-noise ratio

(SNR) in reference to that of amplitude modulation systems.

The SSB systems are chosen for a detailed study of

distortion.

SSB systems require synchronous demodulation, which

is merely downward spectrum translation along the fre-

quency scale before passing on to envelope detection.

If the local oscillator output is:
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where 6 _ are frequency and phase errors, the demodu-

lator output would be:
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and the demodulation is perfect when 6 and

zero. if £ only is zero,

bu£ the shape of 5_ (_) can be very different from that of

s(t). if a ond @ are not both zero, phase and envelope

distortion are introduced.

The envelope of an SSB modulating signal in analytic

form is:

and the analytic expression for the modulated signal is:

where c represents the added carrier to the SSB signal,

or a binomial expansion after normalizing results in

= _ + _ e _---------- 4- ...

The expansion (3.1-12) is valid for (Voelcker 1966)

Z



Therefore distortion is represented by the =erm_j

and mhe following equation holds for distortion and

large c:

102

and

when I_]As(L) I is analytic, and s(t) is a minimum

phase function of the form

.4 -8)

C- C

Distortion reduction is achieved at the cost of power.

The distortionless signal should be

and its distortionless envelope IA,(01can be recovered at

the receiver if _([)can be generated at the receiver

fro,,, l&(eOl.

....... of _e analytic <_gna]

given by the Equation (3.4-3) representing the informa-

tion signal requires the absence of zeroes in the UHP;

moreover,the function must vanish as z-_oo for 0-#0 .

The logarithm of Equation (3.4-6) is
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The function L,J A_(a)I is also analytic when As(Z ) does

not have zeroes in the UHP. This obstacle is easily

removed for SSB by adding a constant c to insure a

balance of zeroes in UHP. This yields

and

i As(_J l

Since As(t ) is Fourier transformable, it therefore

vanishes for H-_ and,

[i_ In A,I ;, ('a) ., L_e {-o; ca. o

The above expression is normalized as

_,'_ (_ [ A_P(Z) 7 = o _.o
;E-- _ i C J

-and all of the conditions of analyticity are now satis-

fied.

-The results obtained above are summarized below:

i. The real part of an analytic signal can be

recovered solely from the envelope of the

logqrithm of the signal. This satisfies

the condition of analyticity/in that the

function is free from zeroes in the UPIP,

and it vanishes as Z -'_ for 0->_o .
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2. The signal must meet the conditions given

in the item above.

3. The log(Irithm of the signal can be made

to satisfy the condition in 1 by normal-

izing it with respect to a constant c.

The normalized analytic signal that satisfies the

_anree condi_ion_ =L_d is thcrcfore suitable for a distor-

tionless envelope detection is

4 ÷ x(_), AHP _os

The above procedure defines envelope detection plus

post detection processing and has been called

"asynchronism" SSB (ASSB).

The phase function associated with Equation (3.4-3)

is

and requires that

_p (_) varies for

C3.4 -I/-+a)

_+ _ (t) >Io Equation (3'4-15) and thus

Voelcker (Voelcker 1968) gave some practical details

of an ASSB, including an AASB "converter" to process the

envelope output of a conventional high quality receiver.
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Figure 3.4-2

sC_)

¢_

ASSB receiver with ASSB converter

The ASSB converter is shown in Fig. 3.4-3 and performs

the operation indicated by Equation (3.4-13).

c

Figure 3.4-3

.D _LA y

_<gUA L/ZAT/O/_"

I _ /VULTI PLIER.
f

t

ASSB converter
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_he delay equalization compensates for the inherent

time delay of the Hiibert transform network in the lower

branch. The theoretical implementation of Equation

(3._-!_) in block-diagram form is quite simple, but the

experimental realization is more difficult. The same

author (Voelcker 1966) gives an experimental ASSB converter

that makes use of:

a) SSB filtering to effect the Hilbert

transformation.

b) Strong carrier injection to guarantee

low deviation phase modulation.

c) Frequency muitiplication to expand the

phase deviation.

d) Sychronous demodulation to effect both

multiplication and cosine function

generation.

The cos_ of distortionless detection as mentioned

above is quite expensive. Once more it is necessary to

determine the minimum distortion required and to indicate

how this must be achieved. This problem is solved by

using optimization techniques. For example, to approxi-

mate the ASSB converter of Fig. 3.4-3, a square law

envelope is used to eliminate the term 92(t_____ in Fig. 3.4-4.
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Note that

C •

and therefore

C z j C

A_ [_IA II2 I= _ 4" C. ... C _,rm&

C. 2. Cz C

so that the approximate network (similar to that of

Fig. 3.4-3) that gives a reasonable distortion is:

l

_. C6. J _ { TRAN'.._ _'O_P_

I I Iv_7"_v°_c

I IHIIll
I- "I

__ 3.4-4 Distortionless envelope detection
schema

The efficiency of _SB is defined by

= sideband power
total power

If _2(_ is the average power of s(t) across 4_

resistor

_3._4 - 17_



and the sideband power is:
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but, since s(_) = H _ _(_]]_ , from the properties of

Hilbert transform (see Section 2.1)

'±'herefore, one obtains-

(3.4 -;_)

The total power is given by the power carrier plus that

of A s (t) :

p

_- _ _-

rio

and

2 sz(e3

_As_5 =

For conventional AM systems, the efficiency is given by

signal power = A_ ([] _ s* (t]

total power = A_ (_]+ _ = x*(t) . ¢._
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c_ . s_(_

On a comparative basis for the same s(t)

the following expression holds:

in both systems,

Thus ASSB has an efficiency ranging between one-to-two

times that of conventional AM.

Noise consideration in ASSB involves complex nonlinear

operations when noise is present in the demodulation

s
operation. For the case of high SRN: -_ >> 4 , consider

the additive noise confined to the spectral band of the

ASSB signal. The signal-plus-noise combination will be:

If

For C
N

then for high SNR, the received ASSB signal is essentially

zero-free in the UI_. At the output of the ASSB converter,

supposed linear demodulation will give:

C.



and the signal-to-noise ratio at the output in terms

of the analytic form will be:

ll0

_%en the noise is strong enough to cause

_ LAmp,_ C_)3 to be negative for a significant

portion of the time, UHP zeroes will occur in significant

numbers, and non-linear distortion will appear in the

output. The distortion will fall within the s(t) band-

widnh, and it will tend _o concentrate in the lower

region of the band. Note that although a qualitative

description of weak SN_ is mathematically and theoreti-

cally clear, it is difficult to evaluate it quantitatively,

and only an experimental study yields definitive results.

in FM systems the same technique is used to calcu-

late the efficiency. The AM system is usually chosen to

be the reference comparative system. For FM systems,
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and the noise affecting FM is the n<_t] component of its

Figure 3.4-5 Quadrature carrier noise representation

qua,_rature-carrier noise representation in phasor-diagram

form (Fig. 3.4-5), and its contribution to output signal

4_

where

A

The signal at the output will be:

There the same difficulty as discussed previously appears

when the analytic representation of FM systems is calcu-

lated. If the method previously presented is applied,

a well-known formula is obtained:
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where _ is the deviation ratio.

3.5 Crosstalk

Quantitative theoretical studies of crosstalk using

analytic functions have not been done until recently. When

two or more information channels are multiplexed, cross-

talk results. The input-output relationship in a system

is given by

= (4, _i _ _z_ + • . • + _mei

in which case the system will be linear if _, ... a m

a-'e constants and all but _4 are zero. The non-linear

Equation (3.5-1) generates new frequencies, as is shown

for a single input of the form

where eo ... _ are the subcarriers of a multiplex.

The output of Equation (3.5-1) is:

I ... _ [ _ L+co_+...+

+ COS%a3n_ 4- 2cO/&J_ CO&_OZ_ + 2C._6{'J34 C'0"S('3_ _" ." _

+ 2_cos (_,,., /: cas co._:I 4- _ [cos 3 (u _ _... _- cos 3 {: +

z
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The zero-pattern representation is much more useful

for analysis of crosstalk than the other systems which

require use of the complex expression (3.5-3). The

problem of crosstalk is reduced to the problem of finding

the interference of zeroes between adjacent channels.

The location of zeroes gives a measure of crosstalk,

because a reiative measure of how much one channel affects

the adjacent channel for a specified bandwidth of the

subcarriers, and the effect on each subcarrier is of

interest.

Crosstalk will appear in zero-pattern representation

shown in signal space _-z in Fig. 3.5-!.The case

• V

Figure 3.5-1

adjacent channels

Linear signal-space representation for
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presented in Fig. 3.5-1 cannot give crosstalk, since the

straight lines representing the subse£s _, ,_ mean that

they form linear and disjoint signal-spaces. But when the

non-linearity of a filter is introduced in one space

signal_, ,_ this will no longer be the case, and _, and

_z are not disjoint, or crosstalk results.

Figure 3.5-2

representation

m,

v, _ _ V " "Z

! !/ / v_ ,_

,

Effects of distortion in signal-space

The points (zeroes) in the z-plane defined for each subset

_-,, _ are determined by a tensor or "psuedo tensor,"

since this is the "space-temps" of Minkowski (Lichnerowicz

1962).

According to the fundamental theorem of the tensor

calculus, if the components for the tensor considered are

all null for a point i)_ the defined space, the same
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components remain null in any other space. This theorem

suggests a solution. The signal defined in its signal

space and by its time vector space will have a definite

shai0e with real and complex zeroes where zero denotes a

point of zero components in its space. Therefore, it

should be zero in a new system of coordinates defining a

....... A 'V_=_^7 _pace. For example, if is a tensor twice contra-

variant

if

and then

A'V=o

,,j:

£,,,- _I!
i _" r.41_. _-v'1#

#or  ,IC

-_i _. ..... e_ _ m massage in analyticThen once =_- _,_ ...............

form are found, their transformation into a new space

(next message) must preserve their characteristic of null

coordinates. Since a psuedo tensor is under discussion,

the change of coordinates into a new space is realized

through the Jacobian of the transformation. For example,

the tensor A '_ , once contravaria',nt in a system of

coordinates y, is changed into A _ , that of x coordinates

through

for" o_ , t" _ "_ , 2 .,._ rl
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where JWis the Jacobian of the transformation

jw I 9xl (_)

If the Jacobian of such a transformation (say from _

space with Z_ ) is the same and coincides with the Jaco-

bian of the transformation JW'for some zero from _-_

space into _-I • it means that both zeroes were in the same

signal space, _nd Lh_fu±_ =n 'intez-section" or "cross-

talk" (in terms of communication) is found. Repeating

the operation for each zero of Z 4into _zand vice versa,

the common zeroes are detected and their "relative density"

gives a good index o_ crosstalk.

_^ _^--- _ =_,,l+ +_e realization._,_ u_=u_y is more _ ....... than _..

A suna_ary of the method is given below:

l ^'_ ...... _ ........ + _ t _+_, __I.J.L =A zeroe=

real zeroes do not contribute to any amount

of power; therefore, no noise is caused by

the "inoffensive" zeroes.

2. The testing of complex zeroes is reduced to

calculating the Jacobian of transformation,

that in the case of specific psuedo-tensors

under consideration, it consists simply of

a matrix formed by elements of sines and

cosines, is easy to carry out.
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3. The calculation of the matrix of transfor-

mation is performed easily by using

calculating techniques that are really

efficient.

The method proposed here can be favorably compared

with that carried out by conventional techniques once

the abstract concepts of "signal space" and "tensor of

dimensions" have been understood, the application of

the more general theory always yields simplified results.
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4.0 TIME DIVISION MULTIPLEXING (TDM)

Time division multiplexing accomplishes a multi-

channel transmission by representing the continuous input

messages in sampled form. Each sampled-message channel

occupies the entire base bandwidth rather than a desig-

naZed part of it as in the FDM system.

Time division multiplexinq, therefore, combines

several message sources serially in the time domain and

transmits them in parallel in the frequency domain. This

"combination" of messages in the time domain is accomplished

by a co_mmutator. The con_zutator performs the functions

._.,c _ _'_ -'. ...... ...] 4-4 ...... _-_.-_ _4 _ _ t'_l _. _.,._ _ _.._,-.,-,4 ._",_ 4

needed to transmit all messages on one channel. At the

receiving end, the "decommutator '° reverses the operation

of combination in a synchronized manner with the commu-

tator, and the sampled messages are separated again into

different channels. Each message waveform is then pro-

cessed by an interpolatLng device that reconstructs a con-

tinuous waveform from the sampled messages (Fig. 4.0-1).

A wide variety of message representation schemes can

be used for sampled-data TDM transmission: pulse amplitude

modulation (PAM), pulse duration modulation (PDM), pulse

code modulation (PCM), pulse phase modulation (PPM), etc.
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Figure 4.1-1

commutator
Sampling operation verified by
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The conventional TDM systems commonly used are included

in this work. The variety of schemes is, however, almost

unlimited.

4.1 Sampling

The continuous message waveform is "sampled" at discrete

intervals generated by a switch or sampling gate. The

_amDiing gate is introduced il_ series with the cont_nous

message. It is usually open but is closed at short, reg-

ularly spaced intervals (Fig. 4.1-0).

The maximum sampling period, or maximum time between

two switch closures so that no information is lost, is given

by the shannon sampling theorem, which states that no infor-

mation is lost if the sampling period is at least equal to

or less than twice the _o_ p_ present in the

message (Downing 1964).

Consider a time function x(t) that has a Fourier

transform _ (_) . The relationship between x(t) and its

Fourier transform is given by

or

where _(/) has been written for brevity as
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If Fx(f) is zero outside the interval -W_<[ _ wd

W

now for [ = _ , the period of sampling

2_

J;

Since Fx(f ) is a perlodic fu_icLion, it can be repre._.nted

through a Fourier series expansion in the interval-_/_f_A/

where e_ , the Fourier coefficient is defnined '

Therefore,

.j,,_' -j""//A d/- _ F>,el) _.c,

214

i,¢ d.nrr/ii W

C__ [____.

and Equation .(4.1-4) can o_ written

df L_,-7)

(°)
Hence .al'l the coefficients of the Foura.er series expansion

of the transform Fx(f ) are specified for the interval
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Therefore Fx(f) is itself specified, and x(t) is deter-

mined through the transformation

It follows that sampling a signal at a rate of at

least 2 W sample s per second does preserve all the infor-

m_ contained in the oriqinal continuous waveform.

4.2 The Process of Interpolation

The process of interpolation is defined as that of

reconstructing a continuous function from a set of sample

values. The process of sampling a continuous function

yields a sequence of discrete instantaneous samples x(_ 1

of the continuous function that is ideally bandlimited to

_/ cps. It is desired to reconstruct the original func-

tion x(t) with the information available by building up

a continuous function ×_(t_ which passes through the

(n) and represents the function x(t)sample values × _-D

between sample.s as accurately as possible.

oo

_=.0o
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The interpolating generating function _s _(t),

defined as follows:

Through band limitation considerations

F_(_) =0 for l/I> IM _4.2-2.J

The Fourier transform relationship for the interpolating

generating function54is:

The. expansion of Fu(f) in a Fourier series in the

interval -W_ f_< _/ gives

j,,,<f/,< _,.___)

therefore,

f ,7 \ _ f_/ jrr(,_.K) f/(.N: _.°-J
-W

the integral vanishes except for

L%
_d&ww j

*_+k =0

,_f @.2-_,;



According to Equation (4.2-2), the values of the last

expression for _ = 0, 1,2...are:

_2o

IW

O_ _- o /or _#o

The Fourier expansion of Fu(f ) is thus given by

zw

and the time domain u(t) is:
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2. W
-IV

_;,_ 2rrwt

2rr w _,

The s:pecified function that satisfies the condition of

interpolation is found by substituting Equation (4.2-7)

for Equation (4.2-1) :

_o

F%= -Do

The representation of xz_£) and u(t) are given below

(Fig. 4.2-1). The method followed is usually called

minimum bandwidth interpolation. Other interpolation func-

tions are the step-function interpolation and polygonal

interpolation. A detailed analysis for determination of,
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o

l \

I

7

Figure 4.2-1 Minimum bandwidth interpolation



interpolauion error can be found in Nichols (1956).

The interpolation-generating function can be

regarded as the impulse response of an interpolation

filter of bandwidth B.
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4.___3 Zer_____ooRepresentation of Pulse Amplitude Modulation

.he fundamental operations involved in time division

systems have already been discussed. Now the new approach

to TD_I systems will be introduced by means of analytic

signal representation.

According to the symbols used in FDM to distinguish

between the real and analytic signals, the actual signal

in pulse amplitude modulation systems can be represented

as

where s(t) is a bandlimited modulating signal, and p(t)

is a periodic pulse-train carrier, _PAM (t) corresponds

to the pulse amplitude modulated signal.

The zero representation technique has been discussed

thoroughly _n Se_o,. 2.4. Since pulse amplitude modulation

is a product process, according to the properties of the

zero representation for analytic signals (Section 2.4_, its



zero pattern is simply the superposition of the zero

pattern of the information and of the zero pattern.of

the pulse. Consider the following example:
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4

(4B -2)

J_ 1 _j'_ t-
o- _ e ___

Following the same procedure indicated in Section 2, a

transformation is made to the complex z-plane by replacing

now let

The zeroes of s(x) are foand by solving:

-2× _ + _x - 2 =o

The equation has two roots, which are:

x I = z Xz = 4

Now to produce the representation in the z-plane



so that

z, t = _i [.n x_. .z z =__ L_xz
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Replacing the values found for Xa ,X%

OJ

The real signal s(t) introduced as an example presents

two cumplete conjugate roots in the _-plane ";_ 4_U_narv

components only.

Let p(t) represent a periodic pulse train with period

T where T _= -- . The pulse consists of an ideal delta

function _(t) band-limited by an ideal filter. It is

possible to obtain for p(t) a representation of zeroes

distributed on the real axis (Woodward 1953). This

representation is shown in Fig. _.4-15. Since the product

of the two signals s(t), p(t) has as its zero-pattern, the

superposition of the zero-patterns of each s(t) and p(t),

the zero-pattern representation of the modulated signal

_A_(t) will have the distribution that appears in

Fig. 4.3-ici .

The zero-pattern representation of PAM offers no

difficulties, since it is based on the property of super-

position of zero correspondence. The sampling function

can be chosen according to the actual signal to be
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o)

j_

_J

! i

o/

_

c/

Figure 3.4-1 Zero pattern for _)AH
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transmitted. Different classes of pulses can be used,

and different rates of sampling, and narrower pulses. The

superposition property will give in each case the config-

uration of the zero pat__ern of the modulated signal by

simple superposition of the zeroes of the specific pulse

used with those of the modulating signal.

_he __,,,_ _=_=_ia_'-pd with the zero-pattern repre-

sentation of PAM systems consists of the difficult

problem of identification of zeroes of the modulating

signal from those of the carrier. No further study has

been conducted in this sense, and the utility of such

-_'-;- ' _ discussion

4.4 Crosstalk Considerations in TDM

Interchannel crosstalk arises in time division multi-

plexing systems when each sample is not confined to its

assigned time slot. The iimitation_of bandwidth and the

non-linearities of the transfer characteristics of the

common transmission path will cause each sample pulse of

the PAM time-multiplexed signal to overlap the neighboring

time slots and interchannel interference will result.

Only the interference caused by band-limiting is called

crosstalk. The amount of this crosstalk is dependent

upon the upper and lower cutoff frequencies of the

t[-an smi s s ion path.
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a) At the upper cutoff frequency, alteration and

phase distortion will prevent a pulse of one channel

from decaying to zero before the.time at which the gate

of the next channel is opened to receive its pulse.

l

l
I -'r ,,t'- I t

Figure 4.4-1 Interchannel crosstalk in TDM system

If a low pass filter is chosen as a model trans-

mission path, at the end of the first slot the crosstalk

voltage is:

v4

Figure 4.4-2 Low pass transmission model
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where _,c_ is the time constant introduced by the

characteristic function of the transmission path. Con,

sider the adjacent channel number two; thecross voltage

is found by letting

where there is the assumption of some interval _ between

channels, and £_ is the time interval of crosstalk.

Therefore,

V, .= V _p ( R,c,J

The crosstalk ratio is defined by

or the crosstalk attenuation in db

b) At the lower cutoff frequency:

Figure 4.4-3

frequency transmission

Crosstalk due to insufficient low
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The same calculation, taking as a model the high pass

filter as model of transmission path, yields for o_<(z,_)

f

1

II

Figure 4.4-4 High pass transmission model

£ t-r

This equation (see Fig. 4.4-3) expresses the value of V4u

when applied as step voltage at t = 0 and a negative step

voltage of the same amount at t = _ . Equation (4.4-5)

can be expressed as follows:

Let t = r • _._ to evaluate the crosstalk in the interval

of overlapping slots
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c) Crosstalk due to the non-linearities of the

transfer characteristics of the transmission path:

Consider the Fourier series representation of the

unmodulated pulse train

/
_:t _ -rr" "C

T

Let s(t) = 4 . NAM Co:W_ t be the modulating signal

0;_ frequency _ . The modulated signal is

s
PA_

1" h:1 1-

oo,o(o.,_ •

_- MA M _ T i c.o£
-I-

where M_ is the modulation factor.

When the train modulated pulses are applied to a

network with the transfer function

-.,foc'<4



the output will be:
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f

£

Figure 4.4-5 Pulse amplitude modulation

_2

Figure 4.4-5 shows the modulating pulse (a), the AM

pulse (b), and the demodulating pulse (c). Note tha the

output pulse is demodulated starting at a time t = kT

after the start of each modulated pulse. The "gating"

process is defined by



where
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Therefore,

: __ CO,r ¢,Oo_" -- . 7.._'TI

V

The gated signal _Ct) is demodulated by passing the

signal through a low pass filter of cutoff frequency

com

frequency will be:

_/z " The expression for the demodulated

,. r,Ti_ _'7.

- (

+-Z__
t_ ,: '1

T"

A (in f._,,- c_r,,) II'n iZrZ, m _C



The final expression for crosstalk calculated by

Bennett (Bennett 1961) for a specified bandwidth is:

139

2Z

r - ]
7-

4.5 Siqnal Noise Ratio i__nnTDM Systems

to- noise ratio than conventional amplitude modulation.

This is due to the fact that the receiver is not blocked

exactly before and after the pulse duration time where

the falling edge of the pulse continues.

Let P denote the average power of the unmodulated

RF pulse train; after modulation the power is increased

by _ '_A_ _ , where MAM is the modulation index due to

the energy in the sidebands. If the bandwidth of the RF

signal is _ , then'the ratio of the unmodulated input

carrier power to noise power is:



where no = noisepower density. Since it is used as

amplitude modulation, the power spectral density of a

periodic waveform is:

140

and the total power s_ect:rumin the bandwidth ! _4 is:

Therefore the modulated signal waveform has the power

and

1_A...__..EM P

Assuming a perfect vzu,_u detecto-r, the uu_pu_ of /-%. A

first detector contains undirectional video pulse of mean

power not yet modulated. After modulation

_=I n_ T

and the signal-to-noise ratio at the output of the video

detector is:

,%.

_/z HA,_ P



From Equation (4.5-Z_) it follows that the low

frequency signal amplitude is:

141

and the low-frequency signal power is equal to

%

2T

If the bandwidth of the low pass filter is [_ , where

/.s is the top frequency of the message function, the

SNR in the output is:

OvT
' no {$

TO eliminate the noise in the interpulse, the noise

power is reduced in the ratio _/r , and the SNR at the

output of the low pass fulter is:

,,of, "/.,-

The result obtained is the same as for conventional
)

carrier amplitude modulation systems for a continuous

wave. But only a part of the actual signal power is used

when the low-frequency band is filtered out of the video-

frequency spectrum. Each harmonic in the pulse spectrum

has a pair of sidebands associated with it; any such side-

band can be separated with a bandpass filter, and the



message can be detected with a normal amplitude modu-

lation detector• but the process described involves a

deterioration of the signal-to-noise ratio.

The advantages of time division multiplexing with

an improved SNR are found in pulse-position modulation

(PPM) and pulse-duration modulation (PDM).
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.L. _ •Disregarding noise and o_h,_r pertubations the

primary function of the interpolation filter is to mini-

mize the total error.

Denote the lowest frequency component of the sampled-

message power spectrum by S_ (_. The higher < order

components S{_),_(_ will be collectively designated as

s,.¢i)-- Z s,, (tJ
¢. = ,,/

disregarding the effect of the spectral envelope of Ss(t).

The model used for the analysis is shown in Fig. 4.6-1.
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1

<
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÷

Figure 4.6-1 Circuit finding the error spectrum

The delay is necessary for final synchronism require-

_L_ waveform may be compared, n,, __4_ _

the diagram, the power spectrum of the interpolation is:

Z

Make the substitution

ycfj _ iy(FJI_ (-j_cF_)
Thus
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The value of the first member of the above expression is:

_je(_) -_I _A= lY_f)_ -

•
CalcL_late the absolute value of the expression under the

square as

Therefore,

/

The interpolation error power Pe is defined:

Jo

Minimum interpolation error will be for

-- o
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Differentiating first under the integral

yc_J Jo D ycf)
From the expression (4.6-2)

d/

4- --

s y q) 9iyq)l _ycP _e(f) Dyff)

the evaluation of each term gives:

_lyt_)i

9 lyc/)l _ _x_/_ciJ

To calculate _8 ('f:J consider:

_j e(FJ
y(f) .ly(_)l e

e*p j_Cf) -=



./.,_(p : _,,ly_f)l . l,.,ly(_)l -_,.,/(r)
y_)

_cF). jl_ y_f> -jz_lycf)l

therefore,

y c_J "J ycf)
Now the expression (4.6-8) becomes :
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Let y ¢f ) = !yr.?! __,,,b_.- ,,__.f.O

- _f_j z,,(f)d ,___Z_
ycr)

ycf)
- 74) s,_(f) _



The condition _ Se(_) is found for

147

= 0

The

with

above expression holds for

i/[pj =mCl) - =..(1) _-l ytnJ =nc_): o

Thus, since

i7(f)i -_ =mc,_)
Xm(I) + sn(})

_.6 -;O)

Sc_): l ycsJe,<vr-d_fJJ:ly(f;l _,<p(-.s_=t _)

y(f) -= smr_J UJ
_(I) +m.(i)

znT

_.& -##)
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This is the transfer function of the optimum inter-

polation filter in the sense of minimum error power.

Now introduce the value obtained into Equation (4.6-5)

_?{_Jm,.,,H)+ .s,DciJ.s'_efT.

m,_CJJ + s_ c÷J

and therefore the minimum interpolation error power is

given by

J: s,_c,?_s,_rU, d/
_ciJ + _ ci)
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5.0 CONCLUSION

The theory of analytic functions has been used as

a new approach to the study of conventional multiplexing

schemes. The multiplexing processes involve double and

triple modulation techniques, and the most general form

of modulated waves exhibits simultaneous and envelope

fluctuations. Modulation processes can be described as

different techniques for varying the two parameters of a

sinusodial wave (carrier) - magnitude and angle, accord-

ing to the message wave to be transmitted. Modulation

processes, therefore, can be described by envelope-phase

relationships.

The phase-envelope relationships described in mathe-

matical representation prove to have a close dependence

on real and complex zeroes of the actual wave. The

concept of real zeroes is easy to understand and visualize,

but the concept of complex zeroes is more difficult to

visualize. However, the mathematical representation of

zeroes is easy in terms of Fourier series, and they show

a physical meaning when related to the spectra, phase,

and envelope functions. The representation of signals in

terms of zeroes gives useful information about the attri-

butes of the signal, using the principle of factorization
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of the terms of the Fourier series expansion of the

signal. Thus the zero pattern offers the advantage of

a time domain significance which shows the phase-envelope

temporal fluctuations, and a frequency domain interpre-

tation as a result of Fourier series coefficients that

describe the spectrum of the signal.

The zeroes of the signal are therefore the informa-

tional attributes of modulated waves. It is shown how

zero manipulation yields to the representation of the

different forms of modulated waves. The difficulties

inherent in complex-zero representation are diminished

when a qualitative study is intended rather than a

quantitative one. It is not necessary to know the location

of zeroes with complete precision so long as the total

zero count and the relative position of zeroes are known.

Futhermore, it is always possible to recover the original

wave from the modulated signal whenever the zero count is

preserved. The important principle of a zero manipulation

allows the zero conjugation of complex pairs, and the

possibility of obtaining a modulated waveform carrier to

handle mathematically, but which shows the same character-

istics as long as the zero count has been preserved in the

zero manipulation.
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Another useful principle in zero operation is that

the zero pattern of a product process is obtained simply

bysuperposition of the zeroes of each product member. This

means that multiplicative processes are the most amenable

to a zero-based description. Fortunately most of the mod-

ulation processes are multiplicative. Non-multiplicative

processes, such as SSB, because of the linear operations

involved, are more difficult to handle.

A qualitative study of a comparison between different

multiplexing sustems is also possible in terms of zero repre-

sentation. Special attention has been given to crosstalk

effects in multiplexing where mathematicalanalysis has

barely been developed upto now. Multiplexing schemes

expressed in terms of zero operation yields a multi-

dimensional space where each zero can be mathematically

described in terms of a tensor or a "psuedo tensor" as

is shown. Tensor analysis is considered to be very helpful

in this new approach to multiplexing schemes. In the

application of this new representation of multiplexing

schemes, difficulties are to be expected, but a strong

possibility exists that these representations will prove

to be a powerful analytical tool. In fact it has been

shown that the mathematical expression for crosstalk in
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multiplexing schemes given by tensor analysis yields to

a more practical evaluation qualitatively and quantita-

tively. Further work is needed to develop a comprehen-

sive and compact theory expressed in terms of the new

tools proposed here.
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5.1 Quantitative Results for Multiplexing Schemes

As a complement to this thesis, the results of a

library research are offered here on the comparative

studies made by many_ a_thors of the performance for the

different multiplexing schemes.

Table I Specifications

B = Effective noise bandwidth

fdm = Frequency deviation of the main carrier caused

by modulated carriers

fsem = The frequency of the subcarrier

_!= modulation parameter

_ = Modulation index

X2= Constant associated with the second modulation

M2= Modulation index for each subcarrier =

Table I which is due to Landon (Landon 1948) gives a

comparison between different multiplexing systems and

modulation based on signal-to-noise ratio compared to

single channel AM as standard.
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Tables II and III Specifications

aoi =

=

D; =

J.

F e =

fD =

fdi

_-dh

fmi

K 2
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unmodulated rms amplitude of subcarrier

positive number related to PAM as the passing

of permissible time that an individual channel

is switched on; (l-l/2) is used to denote

guard space in PDM and PPM

bandwidth required for the carrier

bandwidth required for the subcarriers

deviation rates of a frequency modulated radio

link

deviation rates of FM subcarrier

number of samples for record per channel of

a TDM

video passband of a radio link

max. frequency deviation of a frequency

modulated radio carrier

= max. frequency deviation of the frequency

modulated subcarrier

= max. frequency deviation of the highest

frequency modulated subcarrier

= max. information frequency transmitted in

channel

= rms fluctuation noise per unit bandwidth



KLi

M2i

r

Roi

S

Sr

St =

Sti =

156

= constant characteristic of the type of

modulation of the _fh carrier

= modulation index of the radio link due to the

subcarrier

= modulation index of the _ subcarrier

= number of wideband pairs in the video

passband of a PAM multiplex

= max. phase deviation of a phase modulated

radio carrier

= wide band gain referred to the (_h channel

of a multiplex

= rms amplitude of the sinusoidal video output

of the comparison single channel AM link under

condition of full modulation

= rms amplitide of carrier required for video

improvement threshold

improvement threshold of a frequency or phase

modulated radio carrier

rms amplitude of carrier required for thres-

hold of L_ FM subcarrier

minimum acceptance signed to fluctuation noise

ratio in the output of the _ channel
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Table II which is due to Nichols (Nichols 1954)

gives the "wideband gain and threshold expressions"

comparing the various types of modulation and MPX.

Table III which is due to Nichols (Nichols 1954)

gives the "bandwidth and improvement thresholds for mini-

mum acceptable output SNR."

The symbols used by the author are consistent with

those used in Tables II and III. Note only,

R1 = SNR in output channel

R 2 = SNR in carrier

E = information efficiency

The table due to Nichols and Rauch (Nichols 1956)

gives another parameter for comparison between multiplex

systems. The "information efficiency" defined as the

ratio of the information capacity of the output signal

channel divided by the information capacity of the

modulated signal channel.

efficiency is equal to one.

The ideal value of information

• R12 )W_ (i +

W z (i + R22)



158

O%

r-4

o
_c

H

<

i

uJ

In

>.
_o

_4

.%.-

x[

,I

<

Z_

cO

c_

7_

I

JL

N

(%4

u.

<

.-<

,,_,,

_o

:c
u.

I

u.

(N

"I

.<

_4

._

o.

-%_,.

°

°_

:C



159

_U

%{

I

./

%)

°.J

o

uJ

bo
>..
_n

II

.J

|I

<
J

%.

Z

d
U.

I

I

U_

.-<

I

(h.

%.

b

u_

,9

I

:c
%2

.%

.-<

5.

.>

b

_L

(w

i
I



TABLE ilI (Nichols 1954)
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"FTp_

AM -AM

FH - AM

FM - FM

P#4 - PM
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"TyP _- FO.q M U /_A, c

PAM -AM
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Bairstowe's Iteration to Find the Roots of a Polynomial

The purpose of this method is to find a quadratic

form that divides exactly an nth polynomial. This

quadratic form contains two roots of the polynomial that

can be real, multiple, or conjugate complex, if it

exactly divides the polynomial. The problem is to find

the product and the sum of the root2p and q. Consider

then the nth order polynomial

(×) = _oX" + _,× + ... + _,,.,× + a,,

a_d a quadratic form

where x and y are the two values picked as first approx-

imations to the product and sum of the two roots. If

f(x)
the quotient

m

__fc_:) "

is formed:

/CxJ

ll,i-'i

X _* ÷ p,_ 4. 6_r

: C_.x"-_ +_=_x + ... + _>,,._x+ _,,.,)(_+#_x., i) , R×+,_

the following relations will result:

b O = aO

b I = alp

b 2 = a 2 - pb I - q

b 3 = a 3 -pb 2 - qb I



with

bk = ak - Pbk_1 - qbk_ 2 for k = 0,i 2...n (A-l)

b_l = 0

b.2 = 0

p and q being only approximate values, there will be a

remaining term _S with
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R = bn_ 1 and S = b n + Dbn_ 1

If R = S = 0, then the divisor is a factor of the f(x),

and there are two roots of the polynomial. The basic

plan is to find an adequate approximation of R and S. A

Taylor Series expansion made and terminated the first

derivative (Newton-Ralphson Approximation)

R = f(p + p, q + q) = f(p,q) +Ap

q) = g(p,q) +_PS = g(p + p, q +

"_ f (p, q)

+Aq
9p

_g (P, q)

._ p +nq

sub st itut ing

R = bn_ 1

for

f (b + p, q +

and S = b n + Pbn_ 1

-_bn_ I
q) = bnl_i + Ap

_P

(bn + Pbn- I_
Aq

9q

+_q
_bn_ 1

_ f (p,q)

_q

"_g (p, q)

+



g(P + P, q +
_b n

q) = bn + Pbn_I +_ p- + P

,_bn _bn_ 1 ]
Aq _ g + P _g

bn_ I

_p
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+ bn-1 +

Since the quantity wanted is:

R(p,q) = S(p,q) = 0,

the desired relation is:

bn_ 1 _bn_ 1

bn_ 1 +Ap _p + Ap _q = o (A-2)

[_bn _bn-i iII bn bn-llbn + Pbn_ 1 + A_p + P D p + b n_ +Ag g + p g ,

then c_lculate the Equation (A-2) less p times Equation (A-3)

_b _b
_A_ n _ _ Ag n

_n ' -r _ p ' -n-1 ' _ g = 0 (A-4)

and a new system consisting of the two Equations (A-2) and

(A-4) results.

The derivative with respect ot p and q gives the

necessary relationships between bk and ak. Therefore, the

recursion formula for the coefficient bk is:

b k = a k - Pbk_ 1 - qbk_ 2

D b k _ bk- 1 9 bk- 2

P = -p _p - bk_ 1 -q .-D P (A-5)
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Hence a new vector can be introduced whose components are

related to those of vector b by the recurrence formula:

with _i = o and co = i

from Equations (A-4) and (A-5) follows:

____----.-- = - C_._

ro_ _= _:__.... . (A-_)
I

then

4. _# >( ._ ...

1

4A.- 9 ,_- 5"

can be written where P..'= _,._
r

and _ = e_.z + p e..s

so that ----- _ C_-_

Substituting in Equation (A-4) :

9_

-_-_

= . C__¢ 4- b,_ ,i = c- -- #%--4

- a,,_,= _,,_,-/_._.-_le,,-_-_,,_,
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The Bairstowe iteration takes its final form in the system

of two equations:

Cn_ 2 P + Cn_ 3 q = bn_ 1 (A-9)

Cn_ 1 P + Cn_ 2 q = b n (A-10)

where _ p and _ p are the increments to be given to p

and q in order to get the next approximation

p*=p+ £_p and q* = q + _ q

These increments are calculated by Cramer's rulez

Cn-% Cn -3,

)

I (

IC_. z c_ -3
_'_ _ _ _'_ _

Thus,
b
n-i

P = c 2
n-2

C - b c
n-2 n n-3

- "" C"_n-1 " n-3

b
n

q = 2

"c - b ._
n-2 n-i n-i

Cn_ 2 - Cn_ 1 -Cn_ 3

(A-II)

(A-12)



To summarize the method:

l)

2)
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Choose values for p and q.

The vector A is given; from it get the components

for vectors B and C with recurrence formulas

(A-I), (A-If), and (A-12) respectively.

3) Calculate from Equations (A-II) and (A-12) values

of the increments; and

4) if iZ_pi and i6_i are equal to or less than a very

small quantity E , adequate values of p and q

have been found.

5) If not, the cycle is repeated with new values

p= p +Ap

q = q + &q (A-13).
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is formed.

The Routh Criterion says that when the sequence of

determinants for all n is positive, the roots of the

APPENDIX B

The Routh Criterion

Bairstowe's method does not give any boundaries for

p and q. The starting point of this method actually

consists in choosing some trial values for p and q.

Therefore, the efficiency of the method depends on the

precision of the first trial. The usual techinque starts

with reasonable values for p and q; for example, p = 0.I,

q = 0.i and follows an iterative proceudre to increase p

and q until the conditions specified in Appendix A are

satisfied.

The Routh Criterion establishes the limits of the

real part of the roots of a polynomial of the nth degree.

Given a polynomial of the nth degree

{ _) = _o ×_ _ _ _-I _ + _ _ o

with real coefficients, the determinant

_l _% ..... O
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polynomial are located in the half plane.

Let m(x) be a polynomial of the second degree

The relationship between p, q, and the roots of the

equation is:

= -(x, _ ×2)

then if, and only if x I and x 2 are both negative,

p>o

4 > o

The test for determining whether p and q are positive or

not is to apply the Routh Criterion. If the determinant

4

°

is positive for all n, all the roots in their real parts

will be negative or else will be located in the left half

plane.

Suppose, however, that the original polynomial does

not satisfy the Routh Criterion. A convenient shift of

the axis of reference can solve the difficulty, and the

Routh Criterion is used again as a test. The shift of the

imaginary axis is repeated until the determinant of the

shifted polynomial.



X

I
i

L I
I

l
XI jJ

I

X
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Figure B-1 Shift of the real part of the roots of

pu; y_lu_lii,-,-

exhibits the condition _ > o for all n.

The shift is performed by a new variable

2<: _- X -- C._

so that the new equation with the root-shift of "a" units

will be:

f Cx'-4)- <_o_'x'+<:<J'_+ _, {_<'+4)

The new series of coefficients will be:

I::),l = (_o _ + (:;14

n°4

_, ..- I. G;l_l
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and the new polynomial is

/[x'} = p. x''_ "P P'I )C l _ - I
.%. . . .

or

In order to generate the coefficient of P, proceed

by synthetic division. In this manner, obtain the roots

with their real part shifted to the left by a given

amount. There is an easy way to perform synthetic division

by using computing methods. The shifted polynomial is

tested again for the Routh criterion as previously explained.

The Bairstowe's method can be applied now with greater

efficiency, since the initial values of p and q are chosen

as small positive numbers with the security that they are

fairly close to the actual values of p and q of the

quadratic factors and that the convergence of the method

is that it will be rapid.

Note that the improved method for the estimation of

p and q is correct in the two cases found which is shown

in Figure B-2.

The rightmost root of _(_) is real; however, _(_)

shows a complex root. In both cases the method proposed

is correct, since the real part of the roots is observed.
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l

Figure B 2 _"_,,_• _ ........ n of p and q for (a) real roots

only and (b) real and complex roots

The estimation of the error• however• is different in each

case, since for _ (×)

=_ for Ir_)

W_nen . _ = f_

= C' _ B-

• the following relation is obtained:

An improved method for the Routh Criterion has been

devised. Suppose that z__4 = _

Y

Figure B-3

s

Polynomial with real roots opposite or zero
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The meaning is that the roots of the given polynomial

have their real part opposite or zero. The two cases are

shown in Fig. B-2, where

One good approximation for the quadratic factor in this

area can be:

By choosing a small value for 6 , the convergence

can be rapid, and r I and b will be obtained immediately.

At this point the general case can be considered.

By applying the same techniques which have been explained,

ana _nrougn successlve snlx_s or 5he xed_ p_u u_ Lh_

roots of the original polynomial obtained by synthetic

division, the values obtained for p and q will be fairly

close to the actual ones. Choose, for example, an

interval of 0.5. After t shifts, the Routh Criterion test

finally results in _ = o . At this point the value of

the rightmost root as estimated will be:

Now a rotation is made, pivoting on the "y" axis. In

other words, x is replaced by_x) in the polynomial. Apply-

ing this same technique, the estimated value will be



obtained for the leftmost root after
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t' shifts, as in

Then the estimated values for p and q will be:

The p* and q* values can then be used in Bairstowe's

method as intiial values to find the actual roots. The

efficiency of the method will depend, of course, on the

"rates" chosen for the shift. The value of 0.5 seems to

be reasonable for most cases:

This method has only two inconveniences:

l) It fails in case a complex zero is found in

one or both sides.

2) Furthermore, the accuracy of the method

decreases notably (see Fig. B-2).

The solution to the first inconvenience is to apply

the Descartes Rule of Signs or Stu_m sequenc_if:

I) a complex zero is detected, the method

remains satisfactory.

2) all roots are complex zeroes. Then
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3) all of the roots except one are imaginary

(complex), the lower limits of the negative

roots are determined. Then, by rotating

_[×) into _[-_ and applying the

Routh Criterion, the rightmost or left-

most compl_x zeroes will be obtained and

solution 2 (above) can be used.

If more than one root is present, the upper and lower

limits for them are easily found by applying Descates's

method, and a good estimation for the values of these

roots is again available. The method is efficient and

precise even when complex roots are present.
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0

0

X2 =

,

x2=

0

0

X2=
0

X2=

--X2=
.....................

XI=

,22852453 -

XI=
X2 = -,424935i-i--_

0

XI=

COMPLEX ROOTS

• 22852453 + ,28385722 I
•28_85722 I

COMPLEX ROOT-S................................

-.42493511 + 1.66618396 1

1.66618396 I

REAL ROOTS
.........................

0

......... X2=
0

0

COMPLEX ROOTS

Xl= ,22688782 + :28-1351-!-2_ ........

,22688782 - ,28135112 I
......................... i ...............

COMPLEX ROOTS

X _ = _ ....... _ 4495 ] 80 _ + i _ i 6_709848_III .................

-.44951808 .... Z- 1.67709848 1 -

I I -R EA-E:-Ro0 f S............... ........

X-I 1,8581v909 ......... X#_- ....... --i-;-36-i 31288 -
COMPLEX ROOTS

X l= " - ,22529173 + ,2T.89-5-259 I- ...............
,22529173 - ,27895259 I
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-,47372473 - 1 ,68830043-- I ......

REAL ROOTS

..................................
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X1 -- • 22373466 + ............... Z27 6"gB 2 0--1 Ill I ......

,22373466 -- • 276652 Oi---I-- .................... _ "

COMPLEX ROOTS

" Xl ........ ".7+9754721 -+-- 1.69978493 I
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0
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X2= -, 3746617(J .... ----- 1.64522666 -i ........
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. _--- X2=j___I [..... 22221611- . ,27444401 I ..................
0 COMPLEX ROOTS

Xl= -.52097720 + 1.7115452! I

X2 = -.5209-7720- - .... 1.71f5-4521 I ............

0 ................. REAL ROOTS ....

................... -X-i .... 1'93438536 ............... X2--= -1.2878-44-d2

..... 0 ' " ........ :I: ............ COMPLEX ROOZSj_j-- .............
Xl= .22073477 t + .......... .27232185 I ......

--_X2= ....... .2207347_j .27232185 [ ......................
0 COMPLEX ROOTS

Xl= -.54400545 + 1.72357216 I

X2= -.544005_5 - 1.72357216 I
......... 0 ...... REAL ROOTS

........ Xl_ .... 1.95868441 X2 = -1.26401784

0 COMPLEX ROOTS ...........
....................... #I= ..... .21928946 + .27027961 1

................. X 2=" "21928946-- "2702796iI .........
.....................

0 COMPLEX ROOTS
......... Xl= -.56662276 + ......... i.73585454 1 "

...................................

X2= ........... ---56662276 - 1.73585454I ............................
0 REA' _amTm

XI_ ....... i.9824V564. L.............. X2 = ........ 71-24059294

'0 ............................ COMPLEX ROOTS

Xl= .21787901 . 7 ....... 268_31_203.1 .........
X2 _ ....... __21787901 .... - .26831203 I ........... ............

0 COMPLEX ROOTS
XI= ..... -.58882037 _ .... _Tf_S3--fg[ _ IllI .........

X2: -,58882037 - 1.74837913 I

0 REAL RO0",S
.... X1= ...... 2.00578251 .............. X 2 _I: --/1021760643

0 COMPLEX ROOTS

Xi= .21650226 _ .266411439 1

. X2= .2165022_.l.- .26641439 [ _:I
0 COMPLEX ROOTS

XI= -.61059032 + 1.76113077 I

X2 = -.61059032 - 1.76113077 I

0 REAL ROOTS

XI: 2.02862707 X2 = ...... -i-i9509i46

O l .... COMPLEX _IROOTS ........

Xl: .2!515806 + .26458219 I ..... ]
X2= .21515806 .... - .26458219 I

0 COMPLEX ROOTS

Xl: -.63!92587 _ 1.77409281 I

.... X2 = -.63192587- 1.77409281_.I ....
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